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Abstract. A generic failure and maintenance 
scenario model has been identified to predict early in 
the aircraft design phase the number of times an 
aircraft will not be able to take-off during a mission 
15 minutes after the scheduled departure time. This 
defines the Operational Reliability of the aircraft. The 
suggested model has then been implemented in 
Supercab tool provided by Cab Innovation. This tool 
enables to implement and solve multi-phase Markov 
processes. Predicted probabilities have then been 
validated in a sense on operational data provided by a 
yearly-observed statistical sample. 

INTRODUCTION 
Aircraft development process at Airbus is 

currently based on Concurrent Engineering principles 
to reduce as much as possible the aircraft 
development cycle. One of the consequences is that 
operational performance of the aircraft such as 
operational reliability has to be predicted even earlier 
in the product development process so that customer 
requirements can really drive the product design. 

Operational Reliability (OR) can be defined as 
the number of times per 100 take-off the aircraft can 
not take-off during a mission 15 minutes after the 
scheduled departure time. Operational reliability is 
then a probabilistic value we try to predict during the 
design phase of the aircraft and which will then be 
observed each year for this aircraft on the world wide 
Airbus fleet (number of delays and cancellations for 
100 take-off due to maintenance operations on 
aircraft). This operational observation will constitute 

a statistical sample of the predicted probabilistic 
value. 

 

PREDICTION OF AIRCRAFT 
OPERATIONAL RELIABILITY 

Operational reliability prediction (Zwingelstein 
1996) is based on the estimation of the probability 
that the aircraft may not be in a dispatchable state to 
take-off 15 minutes after the scheduled departure 
time. This estimation is made for the exposure time of 
a mission, which is defined as a succession of 
stopovers and flights. 

Considering a particular equipment (electronical 
or mechanical), several states of the aircraft inferred 
by the state of this equipment have been identified. 
Only 4 states defining the set { }E4E3,E2,E1,S1=  

enable the aircraft to take-off at the end of the 
stopover: 

- E1: Full OK when everything is OK 
with the equipment. 

- E2: Full OK + residual Problem when a 
problem has been detected but not correctly 
solved. 

- E3: MEL GO when a problem has been 
detected and the MEL (Minimum Equipment 
List) has been correctly applied to take-off. 

- E4: MEL GO + Not Solved Problem 
when a problem has been detected and the 
MEL has not been correctly applied to take-
off (bad analysis of the problem). 



  

Several other states defining the set S2 are 
identified. They correspond to the steps of an 
eventual equipment problem resolution: failure 
analysis, MEL application, failure reparation, … A lot 
of parameters are more or less empirically estimated 
to describe these different states and the transition 
rates between these states: Mean Time Between 
Failure (MTBF), mean time for failure analysis, MEL 
application rate, mean time to repair, rate of No Fault 
Found (NFF), … 

For a given equipment, the probability of not 
being able to take-off during the mission after a 
stopover because of this equipment is estimated. It is 
the probability of being in a S2 state 15 minutes after 
the scheduled departure time. This defines the 
Operational Reliability at a system level. S2 states are 
supposed to be exclusive. 

The reliability at the aircraft level is then 
estimated by the sum of the elementary probabilities 
on all of its systems (mechanic, hydraulic, electric and 
electronic systems). 

In a mission, it is assumed that system failures 
can occur either during flights or stopovers, whereas 
failures can be treated only during stopovers. 

MARKOV PROCESSES AND SYSTEM 
RELIABILITY 

It is known (Cocozza-Thivend 1997) that 
Markov processes can be used to estimate 
Operational Reliability of complex systems (Barlow 
1996). Complex systems mean in particular systems 
whose state is described by more than two values (OK 
/ not OK) considering for example the states for 
failure analysis, failure repairing or MEL application 
in case of single, double or even more complex 
failures for this system. 

At first, the use of a Markov process to model the 
evolution of a system state suggests that the system 
evolution between two distinct times t1 and t2 
depends only on the elapsed time t2-t1 and on the 
probability state repartition at time t1. 

Secondly, the use of a Markov process to predict 
the Operational Reliability due to a specific system 
implies that all the transition rates (e.g.: failure and 
repairing rate) are constant in time. Two solutions can 
be retained to cope with this last limitation: 

- Define a succession of Markov processes for 
the different phases (“multi-phases” method) where 
the transition rates are constant and define transition 
or limit conditions on the state probability repartitions 
between two successive phases, 

- Define fictitious states (“fictitious states” 
method) and adapted transition rates in a given phase 
to model for example an Increasing Failure Rate 
(IFR) (Barlow 1996) of the equipment (e.g. 
mechanical equipment). 

AIRCRAFT OPERATIONAL RELIABILITY 
MODELLING 

A generic Markov process model is defined to 

predict the aircraft Operational Reliability inferred by 
a given equipment. This generic model is then used 
for each equipment with its own parameter values 
(mean time between failures, mean time for failure 
analysis, mean time to repair, MEL application rate, 
…). Figure 1 represents the generic Markov process 
from the state E1 (FULL OK). It describes the 
possible evolution of the system’s state (from E1) 
during a first flight phase, then ground phase and 
beginning of the next flight phase. 

E1: Full OK

1st Failure

Failure Analysis

GROUND

MEL ApplicationRepairing

E2: Full OK + PB not seen E4: MEL GO + PB not seenE3: MEL GO

FLIGHT

FLIGHT

E1: Full OK  

Fig. 1: Evolution from state “FULL OK” 

Transition rates between states (exponential 
distributions for all transition laws) are defined from 
mean remaining time in a state and discrete 
probability transition. 

The aim is to calculate the probability of being in 
one of the S2 states which does not enable to take-off 
at the end of a stopover during a given mission. A 
mission is defined by a finite succession of stopovers 
and flights. One or several average mission(s) is (are) 
defined for each type of aircraft to be representative 
of operational conditions. Each of the mission phase 
(flight and stopover) is modelled by a Markov process 
with constant transition rates. The constant transition 
rate hypothesis is a widely accepted hypothesis for 
complex system reliability analysis (Barlow 1996). 
Boundary conditions are used to define the transition 
between probability repartition on in-flight states (S1) 
and probability repartition on on-ground states 
(S1∪S2). 

From the value of the two Markov Processes 
parameters (in flight and on ground), Supercab tool 
(Cabarbaye 2001) enables to integrate these Markov 
Processes to find the state probability repartition 
throughout the mission. 

The average on all the probabilities to be in a S2 
state at the end of a stopover (15 minutes after the 
scheduled departure time) during a mission enables to 
predict the operational reliability of the aircraft due to 
a specific equipment. The figure is then reported to an 
average number of Operational Interruptions (OI) per 
100 take-off. 

Figure 2 represents the evolution of the 
probability of being in a S2 state during a whole 
mission (15 flights of 6.5 hours each). This 
probability is null in in-flight phases and decreasing 
in on-ground phases (failure treatment process). It is 
obvious that only this probability 15 minutes after 



 

  

scheduled departure is taken in account for OI rate 
estimation. It is interesting to note that the induced OI 
probability during the mission (15 minutes afetr each 
scheduled departure time) seems to follow an 
exponential repartition. 
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Fig. 2: Evolution of S2 state probability 
during a mission 

The prediction of the global aircraft operational 
reliability is finally calculated by a sum on all the 
aircraft systems. 

As the aim is to calculate the number of times the 
aircraft can not take-off because of a particular 
system, the state at the end of a stopover is forced on 
a S2 state for the next flight. The aim is indeed not to 
calculate the delay (or cancellation) due to solve a 
problem on a specific system. 

As the model is based on a two-phases Markov 
process (flight/ground), it is possible to take in 
account the time and the phase where the failure 
occurs for Operational Reliability prediction. For 
instance, it is obvious that a failure detected on 
ground is much more severe for Operational 
Interruption than a failure, which has been detected in 
flight. 

At least, as the Markov process model enables to 
support complex multi-states transition diagrams, it is 
possible to take in account a lot of states and 
transitions especially those related to human aspects 
(e.g.: decision making, manpower competence, …). 
Even if transition rates are sometimes difficult to 
evaluate (MEL application rate, No Fault Found 
parameter mainly), they hopefully enable to better 
predict real Operational Interruption (OI) frequencies. 

RESULTS 
Estimations through the previously described 

Markov process based model have been done for 
operated aircraft such as A340 in 1999 or 2000. The 
prediction seems consistent with physical behaviours 
in terms of value and sensitivity. For instance, Figure 
3 represents the evolution of OI rate with mean time 
to repair parameter (in minutes). It is obvious that the 
estimated OI rate increases (with an almost linear 
evolution) when the mean time to repair increases 
itself. 
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Fig. 3: Evolution of estimated OI rate with 
Removal Time 

Some operational parameters have been added to 
take in account the fact that: 

- systems failures can be repaired and 
prevented out of mission cycles during 
scheduled maintenance operations (OI rate 
improvement), 

- systems failures occur more frequently 
just after engine start up because of 
supplementary checks (OI rate increase). 

These operational parameters have been 
estimated for each type of system (electric/electronic 
vs mechanic/hydraulic) by average on operational 
observations (data provided by collaborative airlines 
like Air France) during the previous years (1999-
2000). 

Finally, the estimated operational reliability has 
then been compared with real operational interruption 
rate measured on a year for the world wide fleet (data 
from all airlines). 

A global accuracy of 10% is obtained for the 
prediction of operational aircraft reliability in 1999 
but the good results have not been really confirmed in 
2000 (global accuracy of 20%). 

Even for 1999, it seems to be hard to get 
validated predicted Operational Reliability 
performance at a system level (due to a specific 
system). At the aircraft level (for the whole aircraft) it 
seems difficult to have a stable accuracy result upon 
time. A lot of reasons have been suggested in a 
relevant way to explain these results: 

- Operational Reliability prediction model gives 
an approximation of probability measurement 
whereas operational measures are based on an 
observed sample of this searched probability. There 
can be a large deviation between probability (mean 
frequency) and observed frequency on a statistical 
sample, especially for rare events and little sized 
samples. 

- Operational Reliability prediction model 
depends on average parameter values (e.g.: mean time 
to repair, to analyse, average mission, …) and can 
only lead to an average approximation of the 
Operational Reliability (probability), especially if we 
consider the variety of airlines providing operational 
data for validation. 



  

- Markov processes which are used for 
operational reliability prediction are common to all 
equipment (same parametric model) and then can not 
take in account some system specificity like complex 
redundancies or failure report policies. 

From these remarks, Supercab intensive use has 
enabled to get some model improvements, especially 
by tuning the model parameters and by analysing 
influence of these parameters. 

Despite the relative accuracy weakness, OI rate 
estimation model seams enough reliable and accurate 
to quantify OI rate sensibility to certain parameters 
such as mission profiles. In that sense, Figure 4 shows 
the estimated influence of mission profile on OI rate 
(a lot of short flights versus fewer longer flights), 
independently with global mission length (≈140 
hours). A mission of 20 flights of 5 hours with 2 
hours of stopover is compared for example with a 
mission of 12 flights of 9 hours with a stopover of 3.6 
hours. The x curve represents the OI rate due to all 
mechanic and hydraulic systems, whereas the �  curve 
represents the OI rate due to all electric and electronic 
systems. In a sense, these OI rate projections could 
lead airline flight policies for their fleet exploitation 
improvement (customer service). 
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Fig. 4: Projected influence of mission profiles 
on OI rate 

Some further studies have enabled to show 
modelling stability in terms of prediction accuracy. In 
this sense, the addition of a memory coefficient on the 
estimated reliability value for each equipment enables 
to improve the model accuracy. Linear regression has 
been applied for that. This method has not been 
retained because it does not enable to reach the initial 
objective of OI rate prediction model which is to 
predict operational reliability performance for a new 
system or a new aircraft. The use of a memory 
coefficient does not enable to improve confidence in 
the suggested model. 

STATISTICAL VALIDATION 
Beyond these improvement attempts, the priority 

remains the justification of the validation method. It 
seems indeed not so relevant to validate on an 
observed sample a less than 10% accuracy for the 
predicted frequency of a rather rare event (about 1 
event per 100 take-off at the aircraft level). In that 

sense, classical statistical validation methods have 
been suggested. 

The proposed OI rate estimation model has been 
defined to predict the Operational Interruption 
frequency of an aircraft due to a particular system. 
This OI rate is then measured on each year on the 
world wide Airbus fleet (number of delays and 
cancellations due to maintenance operations on 
aircraft). For instance, in 1999 15 Operational 
Interruptions caused by FMGEC system have been 
reported per 103878 take-off (T/O). The related 
measured OI rate is then 15/103878=1.44.10-4 
(1.44.10-2 per 100 T/O). For this year and this system, 
OI rate estimation model provides a value of 1.50.10-4 
(relative error of 4%). 

In a first step, we define (Xi)i=1,n as 

0iX n,i1 =≤≤∀  if aircraft can take off without any 

Operational Interruption for its ith take-off in the year 

and 1iX n,i1 =≤≤∀  if not. n is then the number of 

take-off in a year. It can be assumed that Xi are 
independent and identically distributed random 
variables. Each of these variables follows a Bernoulli 
law with parameter p. The parameter p is the OI rate 

we want to predict. If we define Sn as ∑
=

=
n

1i
in XS , 

the central limit theorem (Girardin 2001) states 

N(0,1)
p)np(1

npS
n

n  →
−

−
→∞

. In practice, 
p)np(1

npSn

−
−

 

is considered to follow a standard normal law if np 
and n(1-p) are greater than 10 (Cottrell 1999). In our 
case Sn is the number of Operational Interruption in a 
year and for FMGEC (p=1.50.10-4, n=103878), limit 
theorem application hypothesis is respected 
(np≈15.6). 

If Central Limit theorem hypothesis is respected, 
it is possible to determine a confident interval around 

the measured mean 
n

S
p̂ n=  which is an empirical 

estimation of the p. In a first approach, variance p(1-

p) is approximated by 
/np̂

pp̂

p)np(1

npSn −≈
−

−
. For 

validating the OI rate estimation model, it is then easy 
to verify that the provided estimation is in the 
confident interval determined from the operational 
yearly measure. 

For instance, in 1999, for FMGEC system and 
with a confident level of 95%, the confident interval 

around the empirical measure (
n

S
p̂ n= =1.44.10-4) is 

[0;2.17.10-4]. It is easy to check that model based 
estimation (1.50.10-4) is in this interval. 

This first statistical validation method is just a 
first step towards a more complete and suited 
validation framework: 

- Because of central limit theorem 



 

  

application, the method is not applicable for 
rare events (less than 10 occurrences). 

- The method does not give any 
quantified information (probability 
repartition for risk assessment) from the 
position of the estimated OI rate value in the 
determined confident interval. 

- The method has to be extended to take 
in account confident interval estimation 
around other average model parameters 
(e.g.: mean repair time). 

CONCLUSION AND PERSPECTIVES 
A first model has been proposed to predict the 

operational reliability of an aircraft due to a specific 
system. This model is based on the resolution by the 
Supercab tool (Cab Innovation product) of a 
periodical two-phases Markov Processes system with 
boundary conditions. First results show that this 
model enables to predict in a relevant way the global 
operational reliability performance of the aircraft. The 
current model integrates a lot of system and 
maintenance parameters. The comparison of this 
prediction with the aircraft program initial objectives 
enables to early validate system design choices for the 
new aircraft programs such as A380 or to lead fleet 
exploitation optimisation for airlines (customer 
service). 

A precise validation method of the predicted 
operational reliability remains on issue. Theoretical 
confident intervals around average values (Girardin 
2001) or use of Monte-Carlo method for confident 
intervals estimation seems the fittest ways to 
statistically validate the predicted probability. 
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