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This article deals with the estimation of the reliability and the remaining potential of equipment subject to wear whose degradation level
are directly or indirectly observable. Based on accelerated non-stationary Lévy processes, reliability is estimated under various operating
and environmental conditions, considering that wear level is included between the current state observed and an acceptable threshold.
Among the existing models, the Variance Gamma process shows great flexibility to depict the diversity of degradation phenomena and
is therefore well suited for predictive models’ developments. However, its adjustment is difficult because its likelihood function includes
a Bessel function in its expression and can thus have several local optima. Hybrid optimisation (global/local) then appears more precise
than the local methods generally used. The industrial application case presented in the communication was carried out as part of the
RYTHMS project funded by the European Union's Clean Sky?2 research program. It seeks to characterise optoelectronic components

through accelerated testing.
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1. Introduction

Predictive maintenance (or conditional maintenance) is
getting a lot of interest, but its effective implementation
struggles to materialise. Apart from diagnosis, which
estimates the operating state of equipment, it involves the
use of a predictive model which describes its behaviour
under various operating and environmental conditions, to
assess a prognosis. The difficulty lies in the model choice.

- Explanatory degradation models are little used because
they require precise knowledge of the physics phenomena.

- If only the failure is observable, reliability laws, such as
Weibull or lognormal, are used. They can be accelerated to
take into account stress conditions, but require the
observation of numerous operating times to estimate their
parameters.

- If a level of wear is directly or indirectly observable, the
Lévy® processes offer degradation models that can be
accelerated and made non-stationary to vary the rate of
degradation over time.

- Other models exist such as the discrete state processes of
a Markovian family which grows steadily. However, they
do not seem to lead to the resolution of many concrete
applications.

Research [1] has recently enabled to characterise the
reliability of electronic components subjected to wear,
within the framework of the RYTHMS project funded by
the Clean Sky2 research program of the European Union.
The assessment is based on the results of accelerated
degradation tests that are used to fit Gamma or Wiener-
type Lévy processes. The reliability is then assessed under
various operating and environmental conditions,
considering that the level of degradation remains below an

® Paul Lévy (1886 — 1971): French mathematician.

acceptable threshold. The degradation model is used to
assess mission success chances, within reliability estimate
forecasts, or to deduce RUL (Remaining Useful Life) from
current state observed degradation level, within predictive
maintenance.

However, the gamma process is monotonic and the
Wiener one consists of the sum of a drift and a Gaussian
noise, as illustrated in figure 1. A more flexible model is
therefore necessary to represent certain non-monotonic
trajectories, with random jumps of degradation or partial
remission, like the one represented in figure 1: the
Variance Gamma process [2] [3].

The work presented in the present article is part of an
R&D activity, within the predictive maintenance, that aims
at improving predictive reliability estimation or RUL
(Remaining Useful Life) of products whose degradation
levels are, directly or indirectly, observable during tests,
normal use or maintenance actions, under various
operating and environmental conditions. Potential
applications range from simple electronic components to
complex systems such as aircraft [14] or space satellites
[15].

2. Lévy process

Degradation phenomena, such as wear or crack
propagation, can be modelled by Lévy processes. These
stochastic processes are characterised by independent
increments which depend only on the time interval length
(stationary). The best-known models are those of Wiener,
Gamma and Compound Poisson. Initially introduced in the
late 90s in the financial sector, Gamma variance process
may also become relevant in the field of reliability in order
to better represent certain degradation phenomena.



Degradation

1,5 ’ﬂ-
1

0N

Wiener
=== Gamma

e \/ariance Gamma

i T~

=== Poisson

0 10 20 30

Times

40 50

Fig. 1. Lévy process

2.1. Accelerated non-stationary Lévy process

In order to consider a non-constant degradation rate,
the Levy process can be made non-stationary, using a
timescale transformation with the power function shown in
Figure 2, for example.
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It can be accelerated to take into account stresses
generated by operating and environmental conditions, as
shown in Figure 3.
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Fig. 3. Accelerated non-stationary process

The change in degradation between two instants is
then calculated by replacing the time difference h by h *:

h>=p(AF (t+h))* - p(AF B)* (1)

With AF an acceleration factor of type Accelerated
Standard of Life [4]. Representing most of the acceleration
models used in the reliability field (Arrhenius, Basquin,
etc.), this kind of models assume that only the scale factor
of the reliability or degradation law is modified but not its
shape. Moreover, if the stress level varies, Sedyakin

principle [5] makes it possible to determine an equivalent
acceleration factor, by integration of the acceleration factor
to the stress conditions in the current state (2), that
embodies the stress profile applied between two
measurements.

AF(SEquivalent) = %fOtAF(S(u))du (2)

The degradation between two moments evolves, as
follows:

h’ = p(AF(t+h) (t+h) - p(AF(t) t)° ®)

where AF¢(t) and AF(t+h) are respectively the equivalent
acceleration factors between t; and t, and ty and t+h.

2.2. Wiener process

A Wiener process is a Brownian motion with drift
which is expressed as follows:

W(t, 0, c) =b(t, 0,5) =0t +c w(t) (4)

where 0 is the drift, o is the volatility and w(t) is the
normal random variable with zero mean and variance t. Its
evolution between two times t and t + h is modelled by a
normal law with mean 6h and standard deviation cvh. Its
probability density function with respect to the variable h
has the following expression:

_(x-om)?

L e o7 ()

fb(h) (X) = o2

2.3. Gamma process

A gamma process y(t, u, v) is defined by positive
increments distributed according to a gamma law of
expectation ph and variance vh. Its evolution between two
times t and t + h is modelled by a gamma law of
parameters oh and B or p?v h and w/v (gamma law of
parameters o and B having for expectation p = o3 and for



variance v = af?). Its probability density has the
expression (g> 0):
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where T'(x) is the gamma function.

2.4. Compound Poisson process

A compound (or marked) Poisson process is
characterised by positive increases occurring at random
times which follow a Poisson distribution. The degradation
path results, for example, from an accumulation of shocks
without modification of the degradation level between two
shocks. The increase in degradation following a shock may
be constant or may depend on its order in the shocks list.
This process can be combined with other Lévy processes
to model certain degradation phenomena.

2.5. Variance Gamma process

A Variance Gamma process corresponds to Brownian
motion with drift subjected to random time changes
according to a gamma process of type y(t, u =1, v):

X(t, v, 0, c) =b(y(t, 1, v), 6, 6) (8)

Its probability density function at time t can be
expressed by means of the normal density function
conditioned to the occurrence of a time g according to a
gamma distribution of expectation t and variance vt:
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This density is computed in Figure 4 for a given set of
parameters.
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Fig. 4. Density function of the Variance Gamma process

This probability density can also be expressed from a
second type Bessel function [8]. In the general case of a
Variance Gamma process following X(t, v, 6, ) = b(y(t, u,
v), 6, o), itis equal to :
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Where Ko(x) is the second type Bessel function and I'(x)
is the gamma function [8]. The latter expression is not
defined for x = 0. It is equivalent to the following
expression that is most often used for the Gamma variance
distribution:
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where p is the location parameter
B is the asymmetry parameter equal to 6/c2
A the shape parameter equal to t/v

a is equal to 1/c? /Zcz/v + 6°
vy is equal to \/a? — 32
Note that the Gamma variance process is also defined as a

difference between two independent gamma processes
with the same parameter o

X(tv v, 9, 0) = Y(t: p'pv Vp) - Y(tv P-m Vn) (14)

With o, = pp?/vp = oy = vy = v

The value of the parameters can then be calculated by
equalizing the respective characteristic functions which
completely define their probability distribution [3]:
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The Variance Gamma process gives an analytical
expression of its moments [3]:

[\S]

Expectation value: E[X()] =0t
Variance : E[(X(t) - E[X()])’] = (6° v + 6) t
Asymmetry coefficient x Variance¥? :

E[CX(t) - EDXOD* 1= (20° VP +36°0 V) t
Flattening coefficient (Kurtosis) x Variance? :

E[(X(®) - EX®]D 1= Bo* v+ 1262 0°v* +6 0% V) t
+(Bc*+65°0°v+30°Vv) P



4.1. Calculation and simulation

Monte-Carlo simulation of a Variance Gamma process
consists of simulating the variable g by a gamma law and
then the variable x by a normal law, which gives in Excel:

g = GAMMAINV(RAND(),t/nu,nu)
X = Téta*g+Sigma*SQRT(g)*NORM.S.INV(RAND())
or in other words:
x = NORM.INV(RAND(); Téta*g;Sigma*SQRT(g))

Two macro-functions were developed to calculate the
probability density of the Variance Gamma process, one
by integration according to formula 11 and the other with
the Bessel function according to formula 12.
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Fig. 5. Simulated and computed density

Figure 5 shows a good correspondence between the
probability density curves obtained by integration and by
means of the Bessel function, for a given set of parameters.
It is also quite close to a curve obtained by Monte-Carlo
simulation (16,000 draws). The probability density can
also be computed, in Excel 2019, using BESSELK(X, N)
function where N (o) is positive and truncated when it is
not an integer.

Figure 6 shows the truncation effect on the calculated
probability density.
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Fig. 6. Effect of the integer truncation of o

Figure 7 shows the different influences the parameters
of the VVariance Gamma law have on the distribution.

Figure 8 presents the adjustment of the Variance
Gamma with the help of a macro-function involving a
Bessel function, which is much faster than the method
using integration. A stationary process was first adjusted
from a degradation trajectory simulated over 200-time
steps. The parameters used for the simulation are roughly
retrieved by the adjustment. A non-stationary process was
then adjusted from a trajectory of 400 elementary
degradation steps. The parameters used for the simulation
are once again retrieved by the adjustment (q is the power
function parameter).
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Fig. 7. Parameters influence on the distribution
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Fig. 8. Variance Gamma adjustment

An accelerated non-stationary process was finally
adjusted from a trajectory of 400 elementary degradation
steps at different temperatures (Ea is the Arrhenius model
activation energy). The parameters used for the simulation
are once again roughly the same and almost all within the
60% confidence interval.



The multi-parameter adjustment covers both the

degradation model and the accelerating factors. It requires
a high-performance optimisation method to be able to
overcome any local optima. The adjustment was carried
out here using Gencab®, a tool based on a global/local
hybrid optimisation method and which provides
asymptotic confidence intervals from the Fisher matrix
calculated thanks to a numerical method [6] [7].
In addition to the randomness of the simulation, it should
be noted how important the accuracy of the computation of
the probability density which must be similar for every
observation (x, t). It cannot be obtained correctly using a
Bessel function with truncated parameters. Moreover, the
increase of the number of model parameters entails a
larger amount of observed data entries in order to be able
to obtain good estimate of model parameters.

2.7. Reliability model

The definition of a degradation acceptability
threshold enables the move from a degradation model to a
reliability model as illustrated in figure 3. The reliability
corresponds to the law of first crossing time of a
threshold z:

R(t) = P(Z(t) < zs) or R(t-ty) = P(Z(t-ty) < zs— o) (15)

In the case of a Gamma process, this law is the
Gamma law since it is monotonic. The MRL (Mean
Residual Life), which is the expectation of the RUL
(Remaining Useful Life), can be estimated by integrating
the reliability function considering the initial degradation
level and the threshold of the acceptable operation domain.
There is no law describing the first threshold crossing time
for non-monotonic random processes such as Wiener or
Variance Gamma, but the reliability, as well as the MRL,
can be estimated by Monte Carlo simulation.

3. Application

As part of the RYTHMS project, an optoelectronic
module with embedded VCSELs (Vertical Cavity Surface
Emitting Laser), has been characterised for optical
interconnections in aeronautical and space applications. Its
reliability was estimated from results of tests accelerated in
temperature and current following step stresses, presented
in Figure 9. The observable degradation is that of the
optical power, the admissible level of which is greater than
90% of its initial value. 171 statistical data were recorded,
and hence, there are between 8 and 9 degradation values
per component part of a batch of about 20 pieces of the
same type.

As transient improvements are observed on the
curves of Figure 9, the degradation cannot be modelled by
a monotonic process such as the Gamma process.
Therefore, a Wiener model non-stationary and accelerated
was chosen for the estimation and was fitted by the

b Generic tool developed and marketed by
Cab Innovation, based on the Nelder Mead algorithm
coupled with genetic algorithms.

maximum likelihood method as shown in Figure 10 (only
the first two components are shown here among the 20).
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Fig. 9. Degradation trajectories

The adjustment covers both the degradation model
and the accelerating factors. It requires a high-performance
optimisation method to be able to process all the
parameters and exceed any local optimum. The 5
parameters estimated from data are 6 and o for the normal
law, g of the power function pt® (with p = 1), Ea the
activation energy of Arrhenius' law and n the parameter of
an acceleration factor in the current of reverse power type.
The global acceleration factor expression is, as follows:

L\ KD
AF:< ) e [ Tref (16)

ire f

Where :

- i and i (5mA) are currents respectively in test and
reference conditions.

- T and Ty (40°C) are temperatures respectively in test
and reference conditions in °K (T°C + 273),

- K is the Boltzmann constant.

The fitted model was then subjected to a Monte Carlo
simulation to obtain the reliability curve as well as the
expectation and quantiles of the Remaining Useful Life. A
reliability law equivalent to the threshold zs — z0 (Weibull
or log-normal usually used to quantify the reliability of
laser diodes) can then be fitted by the method of least
squares to simplify higher level reliability evaluations.

For comparison purposes, an accelerated non-
stationary Variance Gamma process was fitted from the
same degradation trajectories (figure 11), as well as an
deterministic accelerated power model of type p(AF t)"
(Figure 12). The reliability estimates appear to be much
less conservative, mainly due to the lower values of the
acceleration parameters Ea and n.
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Fig. 11. Adjustment and reliability estimation by Variance Gamma process
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Fig. 12. Adjustment and reliability estimation by power function



Life test results carried out over longer periods (2000 h)
were obtained after these first estimates. These data
(n=70) were used to assess the prediction quality of the
different models, by means of 3 indicators as shown in
figure 13:

n A=V
- the bias: Bias = 2—"=1(Z‘ Y0

- the mean absolute error: MAE =

nyr—y:)2
- the root mean square error: RMSE = f—zlﬂ(ﬁ i)

S G-yl
n

Comparison of predictive models

Wiener

BIAS MAE_RMSE

Variance Gamma Power
BIAS MAE_RMSE BIAS MAE_RMSE

[1,827]2,982[ 4,658

[2,511]3,585] 5,292] [1,182,775[4,59%]

i Tj,

e e
AC197

t i(ma) Ti Pnom [%]  tequialent

0 10 84,9415 0 0

168 10 8494275 -2,13675 1603 -0,63 0,627 0,393
500 10 84943 | -2,5641| 4770 2,636 2,636 6,951
1000 10 84,9495 | -13,6752| 9540 -6,43 6,435 41,41

tequivalent tequivalent

0 0
523,6 -0,47 0,47 0,221 7374 -1,6 1,597 2,551
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Fig. 13. Comparison of the predicted models

The predictions appear here to be really promising,
especially since the model is simple and rigid, which can
be explained with the insufficiency of data used for the
adjustment: the models flexibility partly overcomes the
effect of the stress conditions (171 statistical data used
instead of 400 in the examples in Figure 8).

The processing of this application case will be continued
with the imminent availability of new test data and a better
distribution between the data used for the adjustment (80%
drawn randomly) and those used to develop the quality
indicators for the predictions ( 20%).

4. Considering the effect of maintenance

Several types of model [9][10] aim at characterising the
repair effect in order to optimise maintenance and any
useful lifetime of equipment.

Between remanufacturing and no effect on ageing, a first
class of imperfect repair models is based on a reduced
failure rate:

M) = gMt) with 0 < g <1)  (17)

A second class of models suggest reducing the age of the
equipment. The rejuvenation effect may be proportional to
the time elapsed since the previous maintenance action
(GRP or Kijima type 1 model). The virtual age of the
equipment just after the r™ maintenance action is equal to:

Ar = Ar—1+q (tr'tr—l) = Ar-2+Q(tr-1'tr-2)+q (tr'tr»l)
A = qt, (18)

The rejuvenation effect can also be proportional to the
virtual age of the equipment (model GRP type 2
0orARAwx). After the maintenance action, it is equal to:

Ar = q(Ar-1+tr'tr-1) = q(q(Ar-2+tr-1'tr»2)+tr'tr»1)
A= 20 tt) (19)

Imperfect repair models based on age reduction can be
used with degradation models, as shown in Figure 14.

A third class of model can also be imagined by considering
that the maintenance actions improve the level of
degradation of the equipment, in proportion to its current
state.

Non-stationary Variance Gamma process

Degradation model Maintenance model

vi[ 05 [ 05 ]
0 1,2
c: 0,9
q 1,2

Degradation with imperfect repair

160
140

A
100

< 80 / /

Age reduction

40 Wear reduction

20

Fig. 14. Imperfect repair simulation

Moreover, the decision-making of predictive maintenance
actions must be based on a degradation threshold that
presents margin with the one leading to failure, especially
when the level of degradation is not observable online.
This margin can be optimised by calculating the expected
maintenance cost at each cycle of operation and repair.
This includes the predictive actions cost Cp and the
corrective actions cost Cc:

Cp + (Cc - Cp)(1 - RZS(MRL(Zs—margin))
MRL(Zs—margin)

E|Ccycle i| =

(20)
Where the MRL (Mean Residual Life), which is the
expectation of the RUL (Remaining Useful Life), is
evaluated at the threshold value Z; minus the margin and
Rzs(t) is the reliability at the threshold Z; estimated for this
value of MRL.



5. Conclusion

Lévy processes are used to model equipment
degradation and to estimate their reliability or remaining
potential under various utilisation and environment
conditions. This prognosis is based on the observation of
the degradations evolution in tests or during operation,
which is statistically much richer than the observation of
simple failure time. Weibull or lognormal type equivalent
reliability models can then be obtained for an acceptable
degradation domain.

Still little used in the reliability field, the Variance
Gamma process has great flexibility in representing the
diversity of degradation phenomena and is therefore well
suited for building predictive models. However, its
adjustment is all but simple because its likelihood function
includes a Bessel function in its expression and can hence have
several local optima. Hybrid optimisation (global/local)
appears therefore to be more suitable than the local
methods generally used. The likelihood function must also
be precise and homogenous between the various
observations. Comparison between different adjustments is
easy because the best one is the one with the highest
likelihood to the observations, when the expression of the
probability density, specific to each of the models, is
known. Regarding the quality of the model, this can be
measured by indicators of bias (MAE) or variance (RMSE)
of the estimates compared to a remainder of observations
not used for the adjustment.

Perfect is the enemy of good when a sophisticated
model, capable of considering all behavioural aspects, is
not fitted with sufficient statistical data under various
conditions of use and environment. Nonetheless, to be
suitable for the prognosis, the direct or indirect
observability of degradations, in testing and during
operation, must be considered early on during the design
of new products.

Moreover, imperfect repair models by reduction of
age can be used with degradation models and a new class
of models can be imagined by considering that
maintenance actions improve the level of degradation of
equipment, in proportion to their current state.

The work presented here will soon be included in the
update of reference books [11] [12] [13]. Considering their
potential, they would deserve to be completed and further

explored using a collaborative framework of some sort
which would be the only to answer the diverse challenges.
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