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This article deals with the estimation of the reliability and the remaining potential of equipment subject to wear whose degradation level 

are directly or indirectly observable. Based on accelerated non-stationary Lévy processes, reliability is estimated under various operating 

and environmental conditions, considering that wear level is included between the current state observed and an acceptable threshold. 

Among the existing models, the Variance Gamma process shows great flexibility to depict the diversity of degradation phenomena and 

is therefore well suited for predictive models’ developments. However, its adjustment is difficult because its likelihood function includes 

a Bessel function in its expression and can thus have several local optima. Hybrid optimisation (global/local) then appears more precise 

than the local methods generally used. The industrial application case presented in the communication was carried out as part of the 

RYTHMS project funded by the European Union's Clean Sky2 research program. It seeks to characterise optoelectronic components 

through accelerated testing. 
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1. Introduction 

Predictive maintenance (or conditional maintenance) is 

getting a lot of interest, but its effective implementation 

struggles to materialise. Apart from diagnosis, which 

estimates the operating state of equipment, it involves the 

use of a predictive model which describes its behaviour 

under various operating and environmental conditions, to 

assess a prognosis. The difficulty lies in the model choice. 

- Explanatory degradation models are little used because 

they require precise knowledge of the physics phenomena. 

- If only the failure is observable, reliability laws, such as 

Weibull or lognormal, are used. They can be accelerated to 

take into account stress conditions, but require the 

observation of numerous operating times to estimate their 

parameters. 

- If a level of wear is directly or indirectly observable, the 

Lévy
a
 processes offer degradation models that can be 

accelerated and made non-stationary to vary the rate of 

degradation over time. 

- Other models exist such as the discrete state processes of 

a Markovian family which grows steadily. However, they 

do not seem to lead to the resolution of many concrete 

applications. 

Research [1] has recently enabled to characterise the 

reliability of electronic components subjected to wear, 

within the framework of the RYTHMS project funded by 

the Clean Sky2 research program of the European Union. 

The assessment is based on the results of accelerated 

degradation tests that are used to fit Gamma or Wiener-

type Lévy processes. The reliability is then assessed under 

various operating and environmental conditions, 

considering that the level of degradation remains below an 

                                                           
a
 Paul Lévy (1886 – 1971): French mathematician. 

acceptable threshold. The degradation model is used to 

assess mission success chances, within reliability estimate 

forecasts, or to deduce RUL (Remaining Useful Life) from 

current state observed degradation level, within predictive 

maintenance. 

However, the gamma process is monotonic and the 

Wiener one consists of the sum of a drift and a Gaussian 

noise, as illustrated in figure 1. A more flexible model is 

therefore necessary to represent certain non-monotonic 

trajectories, with random jumps of degradation or partial 

remission, like the one represented in figure 1: the 

Variance Gamma process [2] [3]. 

The work presented in the present article is part of an 

R&D activity, within the predictive maintenance, that aims 

at improving predictive reliability estimation or RUL 

(Remaining Useful Life) of products whose degradation 

levels are, directly or indirectly, observable during tests, 

normal use or maintenance actions, under various 

operating and environmental conditions. Potential 

applications range from simple electronic components to 

complex systems such as aircraft [14] or space satellites   

[15].  

 

2. Lévy process 

Degradation phenomena, such as wear or crack 

propagation, can be modelled by Lévy processes. These 

stochastic processes are characterised by independent 

increments which depend only on the time interval length 

(stationary). The best-known models are those of Wiener, 

Gamma and Compound Poisson. Initially introduced in the 

late 90s in the financial sector, Gamma variance process 

may also become relevant in the field of reliability in order 

to better represent certain degradation phenomena.
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Fig. 1. Lévy process 

2.1. Accelerated non-stationary Lévy process 

In order to consider a non-constant degradation rate, 

the Levy process can be made non-stationary, using a 

timescale transformation with the power function shown in 

Figure 2, for example.  

 

 

Fig. 2. Function ptq  with 0 < q < 1 or q > 1 

It can be accelerated to take into account stresses 

generated by operating and environmental conditions, as 

shown in Figure 3. 

 

Fig. 3. Accelerated non-stationary process 

The change in degradation between two instants is 

then calculated by replacing the time difference h by h ’: 

h’ = p(AF (t+h))
q
 - p(AF t)

q
       (1) 

With AF an acceleration factor of type Accelerated 

Standard of Life [4]. Representing most of the acceleration 

models used in the reliability field (Arrhenius, Basquin, 

etc.), this kind of  models assume that only the scale factor 

of the reliability or degradation law is modified but not its 

shape. Moreover, if the stress level varies, Sedyakin 

principle [5] makes it possible to determine an equivalent 

acceleration factor, by integration of the acceleration factor 

to the stress conditions in the current state (2), that 

embodies the stress profile applied between two 

measurements. 

𝐴𝐹(𝑆𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡) =
1

𝑡
∫ 𝐴𝐹(𝑆(𝑢))𝑑𝑢

𝑡

0
            (2) 

The degradation between two moments evolves, as 

follows: 

h’ = p(AFe(t+h) (t+h))
q
 - p(AFe(t) t)

q
          (3) 

where AFe(t) and AFe(t+h) are respectively the equivalent 

acceleration factors between t0 and t, and  t0 and t+h.  

 

2.2. Wiener process 

A Wiener process is a Brownian motion with drift 

which is expressed as follows: 

 

W(t, , ) = b(t, , ) =  t +  w(t)             (4) 

 

where  is the drift,  is the volatility and w(t) is the 

normal random variable with zero mean and variance t. Its 

evolution between two times t and t + h is modelled by a 

normal law with mean h and standard deviation h. Its 

probability density function with respect to the variable h 

has the following expression: 

𝑓𝑏(ℎ)(𝑥) =  
1

√2ℎ
𝑒

−
(𝑥−ℎ)2

22ℎ              (5) 

 

2.3. Gamma process 

A gamma process (t, , ) is defined by positive 

increments distributed according to a gamma law of 

expectation h and variance h. Its evolution between two 

times t and t + h is modelled by a gamma law of 

parameters h and  or 
2
/ h and / (gamma law of 

parameters  and  having for expectation  =  and for 
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variance  = 
2
). Its probability density has the 

expression (g> 0): 

𝑓(ℎ)(𝑔) =  
𝑔ℎ−1ℎ𝑒−𝑔

(ℎ)
        (6)  

or     𝑓(ℎ)(𝑔) = (



)

2ℎ


 
𝑔

(
2ℎ


−1)

𝑒
(−




𝑔)

(
2ℎ


)

      (7) 

where (x) is the gamma function. 

 

2.4. Compound Poisson process 

A compound (or marked) Poisson process is 

characterised by positive increases occurring at random 

times which follow a Poisson distribution. The degradation 

path results, for example, from an accumulation of shocks 

without modification of the degradation level between two 

shocks. The increase in degradation following a shock may 

be constant or may depend on its order in the shocks list. 

This process can be combined with other Lévy processes 

to model certain degradation phenomena. 

 

2.5. Variance Gamma process 

A Variance Gamma process corresponds to Brownian 

motion with drift subjected to random time changes 

according to a gamma process of type (t,  = 1, ): 

X(t, , , )  = b((t, 1, ), , )       (8) 

Its probability density function at time t can be 

expressed by means of the normal density function 

conditioned to the occurrence of a time g according to a 

gamma distribution of expectation t and variance t: 

𝑓𝑋𝑡
(𝑋) = ∫ 𝑓𝑏(𝑔)(𝑥)𝑓(𝑡)(𝑔)

∞

0
𝑑𝑔  (9)    or 

𝑓𝑋𝑡
(𝑋) = ∫

1

√2𝑔
𝑒

−
(𝑥−𝑔)2

22𝑔 (
1


)

𝑡


 
𝑔

(
𝑡


−1)
𝑒

(−
𝑔


)

(
𝑡


)

∞

0
𝑑𝑔  (10) 

This density is computed in Figure 4 for a given set of 

parameters.  

Variance Gamma law
g f(g) fn(g) f(g)*fn(g)

t : 5 0 0

 : 1 fxt : 0,144285 0,25 0,0001 2E-125 2,1186E-129

 : 0,8 0,5 0,0016 5,2E-58 8,17413E-61

 : 0,4 0,75 0,0062 1,1E-35 6,64575E-38

X : 5 1 0,0153 1,1E-24 1,75332E-26

1,25 0,0291 3,8E-18 1,10453E-19

n : 20 1,5 0,0471 7E-14 3,29982E-15

1,75 0,0679 6,7E-11 4,55451E-12

2 0,0902 1E-08 9,10355E-10

2,25 0,1126 4,4E-07 4,9829E-08

2,5 0,1336 8,2E-06 1,09617E-06

2,75 0,1523 8,1E-05 1,2383E-05

3 0,168 0,0005 8,46297E-05

3,25 0,1802 0,00218 0,000392148

3,5 0,1888 0,00708 0,001336822

3,75 0,1938 0,01837 0,003560375

4 0,1954 0,03967 0,007751093

4,25 0,1939 0,07365 0,014280817

4,5 0,1898 0,12054 0,022878862

4,75 0,1835 0,17745 0,032563479

5 0,1755 0,23874 0,041891642

5,25 0,1661 0,29739 0,049397486

5,5 0,1558 0,34661 0,054007694

5,75 0,145 0,38129 0,055273667

6 0,1339 0,39877 0,053376921

6,25 0,1227 0,39894 0,048964168

6,5 0,1118 0,38374 0,042911098

6,75 0,1013 0,35647 0,036103086

7 0,0912 0,321 0,029283519
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Fig. 4. Density function of the Variance Gamma process 

This probability density can also be expressed from a 

second type Bessel function [8]. In the general case of a 

Variance Gamma process following X(t, , , ) = b((t, , 

), , ), it is equal to : 

fXt
(X) = ∫

1

√2g
e

−
(x−g)2

22g (



)

2t


 

g
(

2t


−1)
e

(−
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(
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)

∞

0
dg   (11) 

or 
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−

1

2
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1

2
√(x − )2 (

22
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2) ) 

  (12)  

Where K(x) is the second type Bessel function and (x) 

is the gamma function [8]. The latter expression is not 

defined for x = 0. It is equivalent to the following 

expression that is most often used for the Gamma variance 

distribution: 

f(x) =
2|x−|

−
1
2 K

−
1
2

(|x−|)

√ (α) (2α)−1/2 eβ(x−)     (13) 

where  is the location parameter 

β is the asymmetry parameter equal to /2 

 the shape parameter equal to t/ 

 is equal to 1/2√22/ + 
2
 

 is equal to √α2 − β2 

 

Note that the Gamma variance process is also defined as a 

difference between two independent gamma processes 

with the same parameter : 

X(t, , , )  = (t, p, p) - (t, n, n)     (14) 

with p = p
2
/p = n = n

2
/n = 1/ 

 

The value of the parameters can then be calculated by 

equalizing the respective characteristic functions which 

completely define their probability distribution [3]: 
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The Variance Gamma process gives an analytical 

expression of its moments [3]: 

Expectation value: E[X(t)] =  t 

Variance : E[(X(t) - E[X(t)])
2
] = (

2
  + 

2
) t 

Asymmetry coefficient  Variance
3/2

 :  

E[(X(t) - E[X(t)])
3
] = (2 

3
 

2
 + 3 

2
  ) t 

Flattening coefficient (Kurtosis)  Variance
2
 :  

E[(X(t) - E[X(t)])
4
] = (3 

4
  + 12 

2
 

2
 

2
 + 6 

4
 

3
) t  

+ (3 
4
 + 6 

2
 

2
  + 3 

4
 

2
) t

2
 

 



4.1. Calculation and simulation 

Monte-Carlo simulation of a Variance Gamma process 
consists of simulating the variable g by a gamma law and 
then the variable x by a normal law, which gives in Excel: 

g = GAMMAINV(RAND(),t/nu,nu) 

x = Téta*g+Sigma*SQRT(g)*NORM.S.INV(RAND()) 

or in other words:   

x = NORM.INV(RAND();Téta*g;Sigma*SQRT(g)) 

Two macro-functions were developed to calculate the 
probability density of the Variance Gamma process, one 
by integration according to formula 11 and the other with 
the Bessel function according to formula 12.  
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Fig. 5. Simulated and computed density 

 
Figure 5 shows a good correspondence between the 

probability density curves obtained by integration and by 
means of the Bessel function, for a given set of parameters. 
It is also quite close to a curve obtained by Monte-Carlo 
simulation (16,000 draws). The probability density can 
also be computed, in Excel 2019, using BESSELK(X, N) 

function where N () is positive and truncated when it is 
not an integer.  

Figure 6 shows the truncation effect on the calculated 
probability density.  
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Fig. 6. Effect of the integer truncation of  
 

Figure 7 shows the different influences the parameters 
of the Variance Gamma law have on the distribution. 

Figure 8 presents the adjustment of the Variance 
Gamma with the help of a macro-function involving a 
Bessel function, which is much faster than the method 
using integration. A stationary process was first adjusted 
from a degradation trajectory simulated over 200-time 
steps. The parameters used for the simulation are roughly 
retrieved by the adjustment. A non-stationary process was 
then adjusted from a trajectory of 400 elementary 
degradation steps. The parameters used for the simulation 
are once again retrieved by the adjustment (q is the power 
function parameter).  

Variance Gamma distribution

t : 5

1 2 3

 : 2 3,33333 10

 : 1 1 1

 : 1 1 1
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Fig. 7. Parameters influence on the distribution 

Variance Gamma process Confidence interval: 60%

Min Max Fisher Matrix : Variance-covariance :

s : 0,4  : 0,4537681 0,27054 0,637 22,1296 1,52925 -21,571 0,0474 6,4E-05 0,00227

s : 0,3  : 0,2946702 0,24785 0,34149 1,52925 326,919 -41,125 6,4E-05 0,00309 0,00029

s : 0,8  : 0,7598583 0,71904 0,80067 -21,571 -41,125 450,999 0,00227 0,00029 0,00235

Ln likelihood : -228,8515

Simulation ########

t #VALEUR! ######## f(t) Ln(f(t))

0 0 0

1 0,6068533 0,25509 0,597307 -0,515324

2 0,1249632 0,519018 0,594635 -0,519807

3 0,813899 1,073517 0,4696019 -0,75587

4 2,6550462 -2,14058 0,0001936 -8,54995

5 1,634805 -0,32819 0,0715226 -2,637742

6 0,5051803 -0,00115 0,572724 -0,557351

7 0,357446 -0,51868 0,2875537 -1,246346

8 0,6867534 -0,4478 0,6202851 -0,477576

9 1,1013252 -0,81952 0,3795964 -0,968647
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Non-stationary Variance Gamma process

Confidence interval: 60%

Min Max Fisher Matrix : Variance-covariance :
s : 0,8  : 0,7555364 0,5372932 0,9737796 585,56 28,086 -129 -3046 0,0672 -0,043 -0,017 0,0129

s : 0,6  : 0,5567765 0,3884115 0,7251416 28,086 107,83 -110,7 66,488 -0,043 0,04 0,014 -0,008

s : 0,5  : 0,4582566 0,3865793 0,5299339 -129 -110,7 512,21 975,75 -0,017 0,014 0,0073 -0,003

qs : 0,6 q : 0,6028839 0,5603762 0,6453916 -3046 66,488 975,75 17356 0,0129 -0,008 -0,003 0,0026

Ln likelihood : 1220,1022

Simulation ########

t ######## ######## f(t) Ln(f(t))

0 0 0

1 1,517603 0,55659 0,589548 -0,5284

2 0,228198 0,936953 0,63067 -0,460973

3 0,062437 0,798567 0,603591 -0,504858

4 0,35598 1,17034 0,525792 -0,642849

5 0,692702 1,036244 0,60573 -0,50132

6 0,153465 1,244733 0,842364 -0,171543

7 0,220137 0,684156 0,012674 -4,368211

8 0,090498 0,669252 3,950488 1,373839

9 0,036813 0,574102 0,889409 -0,117198

10 0,259007 0,982579 0,344512 -1,065627

11 0,300223 1,078845 1,422124 0,3521518

12 0,017296 1,046632 2,496648 0,9149491
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Accelerated non-stationary gamma variance process

Confidence level: 60%

Min Max Fisher Matrix: Variance-covariance Matrix:

s : 0,9  : 0,7079 0,4054 1,0105 463,242 16,1979 -86,118 -2583 -295,02 0,12921 -0,1196 -0,0785 0,0248 -0,0013

s : 0,6  : 0,7401 0,4361 1,0441 16,1979 65,2133 -37,089 114,02 23,9541 -0,1196 0,13047 0,07866 -0,0232 -0,0002

s : 0,8  : 0,9963 0,7964 1,1962 -86,118 -37,089 194,552 892,606 140,159 -0,0785 0,07866 0,05641 -0,0154 -0,0004

qs : 0,7 q : 0,6704 0,6115 0,7292 -2583 114,02 892,606 16943 2123,17 0,0248 -0,0232 -0,0154 0,00489 -0,0007

Eas : 0,4 Ea : 0,344 0,2899 0,3981 -295,02 23,9541 140,159 2123,17 520,559 -0,0013 -0,0002 -0,0004 -0,0007 0,00413

Reference : 25 °C

Ln likelihood : 64,1531

Simulation : 36 1,7507 ######## ###### ######

t T°C AF t equiv. g X t equiv. f(t) Ln(f(t))

0 0 0

1 37,7 1,89 1,89 3,340 4,266 1,73 0,0274 -3,5978

2 31,3 1,38 3,28 0,415 4,241 3,05 0,7785 -0,2504

3 30,9 1,35 4,63 0,707 4,500 4,35 0,6232 -0,473

4 38,2 1,93 6,56 0,797 5,209 6,11 0,3508 -1,0477

5 25,9 1,05 7,61 0,062 5,176 7,15 1,4453 0,36834

6 36,9 1,82 9,43 1,357 6,425 8,83 0,1641 -1,807

7 36,9 1,82 11,25 0,084 6,326 10,50 0,7496 -0,2882

8 44,0 2,54 13,79 0,472 7,031 12,73 0,3493 -1,0517
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Fig. 8. Variance Gamma adjustment 
 

An accelerated non-stationary process was finally 

adjusted from a trajectory of 400 elementary degradation 

steps at different temperatures (Ea is the Arrhenius model 

activation energy). The parameters used for the simulation 

are once again roughly the same and almost all within the 

60% confidence interval. 



 

 

The multi-parameter adjustment covers both the 

degradation model and the accelerating factors. It requires 

a high-performance optimisation method to be able to 

overcome any local optima. The adjustment was carried 

out here using Gencab
b
, a tool based on a global/local 

hybrid optimisation method and which provides 

asymptotic confidence intervals from the Fisher matrix 

calculated thanks to a numerical method [6] [7]. 

In addition to the randomness of the simulation, it should 

be noted how important the accuracy of the computation of 

the probability density which must be similar for every 

observation (x, t). It cannot be obtained correctly using a 

Bessel function with truncated parameters. Moreover, the 

increase of the number of model parameters entails a 

larger amount of observed data entries in order to be able 

to obtain good estimate of model parameters. 

 

2.7. Reliability model 

The definition of a degradation acceptability 

threshold enables the move from a degradation model to a 

reliability model as illustrated in figure 3. The reliability 

corresponds to the law of first crossing time of a 

threshold  zs: 

R(t) = P(Z(t)  zS) or R(t-t0) = P(Z(t-t0)  zS– z0) (15) 

In the case of a Gamma process, this law is the 

Gamma law since it is monotonic. The MRL (Mean 

Residual Life), which is the expectation of the RUL 

(Remaining Useful Life), can be estimated by integrating 

the reliability function considering the initial degradation 

level and the threshold of the acceptable operation domain. 

There is no law describing the first threshold crossing time 

for non-monotonic random processes such as Wiener or 

Variance Gamma, but the reliability, as well as the MRL, 

can be estimated by Monte Carlo simulation. 

 

3. Application 

As part of the RYTHMS project, an optoelectronic 

module with embedded VCSELs (Vertical Cavity Surface 

Emitting Laser), has been characterised for optical 

interconnections in aeronautical and space applications. Its 

reliability was estimated from results of tests accelerated in 

temperature and current following step stresses, presented 

in Figure 9. The observable degradation is that of the 

optical power, the admissible level of which is greater than 

90% of its initial value. 171 statistical data were recorded, 

and hence, there are between 8 and 9 degradation values 

per component part of a batch of about 20 pieces of the 

same type. 

As transient improvements are observed on the 

curves of Figure 9, the degradation cannot be modelled by 

a monotonic process such as the Gamma process. 

Therefore, a Wiener model non-stationary and accelerated 

was chosen for the estimation and was fitted by the 

                                                           
b Generic tool developed and marketed by 

Cab Innovation, based on the Nelder Mead algorithm 

coupled with genetic algorithms. 

maximum likelihood method as shown in Figure 10 (only 

the first two components are shown here among the 20). 
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Fig. 9. Degradation trajectories 

The adjustment covers both the degradation model 

and the accelerating factors. It requires a high-performance 

optimisation method to be able to process all the 

parameters and exceed any local optimum. The 5 

parameters estimated from data are  and  for the normal 

law, q of the power function pt
q
 (with p = 1), Ea the 

activation energy of Arrhenius' law and n the parameter of 

an acceleration factor in the current of reverse power type. 

The global acceleration factor expression is, as follows: 

𝐴𝐹 = (
𝑖

𝑖𝑟𝑒𝑓
)

𝑛

𝑒
−

𝐸𝑎

𝐾
(

1

𝑇𝑟𝑒𝑓
 − 

1

𝑇
)
         (16)  

Where :   

- i and iref (5mA) are currents respectively in test and 

reference conditions.  

- T and Tref (40°C) are temperatures respectively in test 

and reference conditions in °K (T°C + 273),  

- K is the Boltzmann constant. 

The fitted model was then subjected to a Monte Carlo 

simulation to obtain the reliability curve as well as the 

expectation and quantiles of the Remaining Useful Life. A 

reliability law equivalent to the threshold zs – z0 (Weibull 

or log-normal usually used to quantify the reliability of 

laser diodes) can then be fitted by the method of least 

squares to simplify higher level reliability evaluations. 

For comparison purposes, an accelerated non-

stationary Variance Gamma process was fitted from the 

same degradation trajectories (figure 11), as well as an 

deterministic accelerated power model of type p(AF t)
q
 

(Figure 12). The reliability estimates appear to be much 

less conservative, mainly due to the lower values of the 

acceleration parameters Ea and n. 



 

Non stationary Wiener process accelerated in temperature and current

 : 0,047004351 Confidence rate:

 : 0,000836948 60%

q : 1,016058545

Ea : 0,197364641 Confidence interval:

n : 1,928459679 Min Max

TjREF iREF  : 0,047 0,03628 0,05773

40 5 Ln Likelihood: -925,583839  : 0,02473 0,02434 0,02513

q : 1,01606 0,94774 1,08438

E165 Simulation Ea : 0,19736 0,1624 0,23233

t Tj i (ma) FA t equivalent Pnom [%] f(t) Ln(f(t)) Power (mw) n : 1,92846 1,60938 2,24753

0 0 50,3452 8 0 0 0

1 96 50,351 8 3,12874403 300 -1,754386 0,10400447 -2,26332136 0,555093991 Fisher's Matrix:

2 192 85,35035 8 6,24916964 900 -1,3157895 0,23306424 -1,45644116 2,258517183 154794 0,31836 32342,9 20831,8 2421,7
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E166 Simulation -0,0008 -3E-05 0,00659 -0,002 -0,0166

t Tj i (ma) FA t equivalent Pnom [%] f(t) Ln(f(t)) Power (mw) 0,0001 3E-06 -0,002 0,00173 0,00559
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1 96 50,35035 8 3,12869948 300 -1,2931034 0,22955109 -1,47162967 #NOMBRE!
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Non stationary Wiener process accelerated in temperature and current

 : 0,04700435 TjREF iREF Simulation Mean Mean inf 60% Mean sup 60% Q10 60% Q90 60%

 : 0,00083695 40 5 Residual Life: 6500 10685 10648 10721 5000 18000

q : 1,01605854

Ea : 0,19736464 Tj (°C) i (ma) AF

n : 1,92845968 40 5 1

t t equivalent Simulation Mean M-60% M+60% Q10 60% Q90 60% Expectation

0 0 0 0 0 0 0 0 0

500 500 -0,5308822 -0,4588 -0,4661 -0,4514 -1,8596 0,9560597 -0,462392
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3000 3000 -4,2174292 -2,8473 -2,8659 -2,8287 -6,4711 0,7326204 -2,855336

3500 3500 -4,5954608 -3,318 -3,3381 -3,298 -7,2243 0,5350293 -3,339482
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Fig. 10. Adjustment and reliability estimation by Wiener process 

 
Non stationary Variance gamma process accelerated in temperature and current

 : 390,3420998 Confidence rate:

 : -0,00171874 60%

 : 0,053427276

q : 1,098461831 Confidence interval:

Ea : 0,031942469 Min Max
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40 5 Ln Vraisemblance : -17700  : 0,0534273 0,0389771 0,0678775
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-2

-1,5

-1

-0,5

0

0,5

1

1,5

0 500 1000

Power (mw)

 

Non stationary Variance Gamma accelerated in temperature and current
 : 390,3421

 : -0,0017187 TjREF iREF Simulation Moyenne Mean inf 60% Mean sup 60% Q10 60% Q90 60%
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Fig. 11. Adjustment and reliability estimation by Variance Gamma process 

Accelerated power function
p  : -4,4604E-06

q : 1,314102259

Ea : 0,295811812

n : 3,469258433
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0 0 50,3452 8 0 0 0
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Fig. 12. Adjustment and reliability estimation by power function 



 

Life test results carried out over longer periods (2000 h) 

were obtained after these first estimates. These data 

(n = 70) were used to assess the prediction quality of the 

different models, by means of 3 indicators as shown in 

figure 13: 

- the bias:   𝐵𝑖𝑎𝑠 =
∑ (𝑦�̂�−𝑦𝑖)𝑛

𝑖=1

𝑛
  

- the mean absolute error:   𝑀𝐴𝐸 =
∑ |(𝑦�̂�−𝑦𝑖)|𝑛

𝑖=1

𝑛
 

- the root mean square error:    𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂�−𝑦𝑖)2𝑛

𝑖=1

𝑛
 

 

Comparison of predictive models

Wiener Variance Gamma Power

BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

1,827 2,982 4,658 2,511 3,585 5,292 1,18 2,775 4,596

iREF TjREF

5 40

AC197

t i (ma) Tj Pnom [%] t equivalent t equivalent t equivalent

0 0 10 84,9415 0 0 0 0

1 168 10 84,94275 -2,13675 1603 -0,63 0,627 0,393 523,6 -0,47 0,47 0,221 7374 -1,6 1,597 2,551

2 500 10 84,943 -2,5641 4770 2,636 2,636 6,951 1558 3,429 3,429 11,76 21947 1,295 1,295 1,676

3 1000 10 84,9495 -13,6752 9540 -6,43 6,435 41,41 3116 -4,81 4,808 23,11 43895 -7,75 7,749 60,05  

Fig. 13. Comparison of the predicted models 

The predictions appear here to be really promising, 

especially since the model is simple and rigid, which can 

be explained with the insufficiency of data used for the 

adjustment: the models flexibility partly overcomes the 

effect of the stress conditions (171 statistical data used 

instead of 400 in the examples in Figure 8). 

The processing of this application case will be continued 

with the imminent availability of new test data and a better 

distribution between the data used for the adjustment (80% 

drawn randomly) and those used to develop the quality 

indicators for the predictions ( 20%). 

 

4. Considering the effect of maintenance 

Several types of model [9][10] aim at characterising the 

repair effect in order to optimise maintenance and any 

useful lifetime of equipment. 

Between remanufacturing and no effect on ageing, a first 

class of imperfect repair models is based on a reduced 

failure rate: 

(tr+) = q(tr-) with 0  q 1)     (17) 

A second class of models suggest reducing the age of the 

equipment. The rejuvenation effect may be proportional to 

the time elapsed since the previous maintenance action 

(GRP or Kijima type 1 model). The virtual age of the 

equipment just after the r
th

 maintenance action is equal to: 

Ar = Ar-1+q(tr-tr-1) = Ar-2+q(tr-1-tr-2)+q(tr-tr-1)  

Ar = qtr                               (18) 

The rejuvenation effect can also be proportional to the 

virtual age of the equipment (model GRP type 2 

orARA). After the maintenance action, it is equal to: 

Ar = q(Ar-1+tr-tr-1) = q(q(Ar-2+tr-1-tr-2)+tr-tr-1) 

 Ar = S1
r
q

r-i+1
(ti–ti-1)               (19) 

Imperfect repair models based on age reduction can be 

used with degradation models, as shown in Figure 14. 

A third class of model can also be imagined by considering 

that the maintenance actions improve the level of 

degradation of the equipment, in proportion to its current 

state. 

Non-stationary Variance Gamma process

Degradation model Maintenance model

 : 0,5 t : 0,5

 : 1,2

 : 0,9

q : 1,2

######## #NOMBRE! #NOMBRE! #########

t g Wear reduction Age reduction

0 0 0 0 0

1 0,042998 0,281074054 0,48446892 0,5181299

2 2,595341 1,680568637 0,256169664 0,7565006

3 1,013128 2,320941106 2,297586574 4,4000764

4 1,430168 5,211020481 1,226021906 3,3319416

5 1,265961 6,179902821 2,685061072 5,3926225

6 2,466787 8,047762373 1,215700875 8,2704792

7 0,178171 8,447597676 2,931398469 12,343765

8 1,551359 10,31199149 1,989644777 11,642103

9 3,870325 17,07993175 0,784860641 11,296445
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Fig. 14. Imperfect repair simulation 

Moreover, the decision-making of predictive maintenance 

actions must be based on a degradation threshold that 

presents margin with the one leading to failure, especially 

when the level of degradation is not observable online. 

This margin can be optimised by calculating the expected 

maintenance cost at each cycle of operation and repair. 

This includes the predictive actions cost Cp and the 

corrective actions cost Cc: 

𝐸|𝐶𝑐𝑦𝑐𝑙𝑒 𝑖| =
𝐶𝑝 + (𝐶𝑐 − 𝐶𝑝)(1 − 𝑅𝑍𝑠

(𝑀𝑅𝐿(𝑍𝑠−𝑚𝑎𝑟𝑔𝑖𝑛))

𝑀𝑅𝐿(𝑍𝑠−𝑚𝑎𝑟𝑔𝑖𝑛)
 

(20) 

Where the MRL (Mean Residual Life), which is the 

expectation of the RUL (Remaining Useful Life), is 

evaluated at the threshold value Zs minus the margin and 

RZs(t) is the reliability at the threshold Zs estimated for this 

value of MRL. 



5. Conclusion 

Lévy processes are used to model equipment 

degradation and to estimate their reliability or remaining 

potential under various utilisation and environment 

conditions. This prognosis is based on the observation of 

the degradations evolution in tests or during operation, 

which is statistically much richer than the observation of 

simple failure time. Weibull or lognormal type equivalent 

reliability models can then be obtained for an acceptable 

degradation domain. 

Still little used in the reliability field, the Variance 

Gamma process has great flexibility in representing the 

diversity of degradation phenomena and is therefore well 

suited for building predictive models. However, its 

adjustment is all but simple because its likelihood function 

includes a Bessel function in its expression and can hence have 

several local optima. Hybrid optimisation (global/local) 

appears therefore to be more suitable than the local 

methods generally used. The likelihood function must also 

be precise and homogenous between the various 

observations. Comparison between different adjustments is 

easy because the best one is the one with the highest 

likelihood to the observations, when the expression of the 

probability density, specific to each of the models, is 

known. Regarding the quality of the model, this can be 

measured by indicators of bias (MAE) or variance (RMSE) 

of the estimates compared to a remainder of observations 

not used for the adjustment. 

Perfect is the enemy of good when a sophisticated 

model, capable of considering all behavioural aspects, is 

not fitted with sufficient statistical data under various 

conditions of use and environment. Nonetheless, to be 

suitable for the prognosis, the direct or indirect 

observability of degradations, in testing and during 

operation, must be considered early on during the design 

of new products. 

Moreover, imperfect repair models by reduction of 

age can be used with degradation models and a new class 

of models can be imagined by considering that 

maintenance actions improve the level of degradation of 

equipment, in proportion to their current state. 

The work presented here will soon be included in the 

update of reference books [11] [12] [13]. Considering their 

potential, they would deserve to be completed and further 

explored using a collaborative framework of some sort 

which would be the only to answer the diverse challenges. 
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