
1 INTRODUCTION  

The optimization of complex systems under avail-
ability constraints has become one of the major chal-
lenges in all engineering domains (aeronautic or 
space systems for example). Usually based on cost 
criteria (Life Cycle Cost), this optimization is built 
on the availability evaluation of complex systems 
made of many different equipments organized on 
particular redundancy patterns. In addition to correc-
tive maintenance the planned maintenance is imple-
mented in order to avoid wear phenomena and hid-
den failures. Several stocks of spare equipments 
avoid long supply and repair delays.  
The optimized configuration might take into account 
big number of independent parameters. This is why 
the pseudo-manual approaches, such as the analysis 
of sensitivity, are impossible. 
The evaluation methods have to model the true sys-
tems behavior and be validated by designers. More-
over, those methods shall lead to fast computing in 
order to be directly coupled with automatic optimi-
zation methods that need big numbers of evaluations 
to converge (Goldberg 1994). 
No evaluation method is the perfect answer to this 
point: 
- Reliability block diagrams and fault trees allow 
fast processing but can not take into account the dy-
namic behaviors. 
- Markovian solver is as fast and precise but is 
quickly limited by the big number of Boolean com-
binations. 
- Stochastic PETRI nets have a great quality for rep-
resentation but are difficult to use and their process-
ing very slow (The simulation of a Monte-Carlo type 
is 1000 times longer than an equivalent analytic or 
Markovian type for 2 to 3 digits of accuracy).  

 
This paper proposes two original techniques that 
seem to be the adequate answers when those meth-
ods are inappropriate: 
- A hybrid method based on fault trees and Mark-
ovian processes when systems are made of inde-
pendent sub-systems of average complexity.  
- A recursive simulation model when the sub-
systems are dependent or too complex.  
 
 

2 HYBRID MODEL 

When systems consist of independent sub-systems, 
each one of limited size, a hybrid technique using 
fault trees and Markovian processes is a good alter-
native solution. But this joint use of two well-known 
methods curiously constitutes originality in a reli-
ability field characterized by practices of work and 
schools of thought. 
Markovian process can take into account the dy-
namic aspects of sub-systems (reconfiguration, re-
pair, return to shop) as well as some stochastic de-
pendence between their equipments (cold 
redundancy, limited number of operators or repair-
ers). In order to limit the effort of modeling signifi-
cantly, various tools can be used.  
Thus, a Markovian models generator (Cabarbaye 
and all 1999) allows automatically to build the 
Markov matrix of a system thanks to the input of 
logical equations describing its good functioning and 
potential stochastic dependences. The tool groups 
together equivalent system states.  
In the same way, redundancy parametric formula 
(Laulheret 2003), as shown on figure 1, allows to 
automatically generate the corresponding Markovian 
model and then obtain reliability or availability data. 
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The redundancies can be of M among N type, active 
or passive, with a spare stock of size S.  
 
 
 
 

 
 
 
 
 
 

= Redundancy(M, N, λON, λOFF, T, Treconf, MDT, Nboperators, S,  
TAT, Nrepairers, Active/passive, Reliability/Availability) 
 

Figure 1. Parametric redundancy formula 
 

The maintenance is characterized by the Mean 
Down Time (MDT) value (repair by replacing failed 
equipment by an identical new one) and Turn 
Around Time (TAT) value (repair in shop or stock 
supply delays). The passive, hot or cold (λOFF ≠ λON) 
redundancies are characterized by the reconfigura-
tion time to switch on redundant equipments.  
As an example, figure 2 shows the Markovian ma-
trix of a passive redundancy of one equipment 
among two plus one spare (M=1, N=2 and S=1). 
Equivalent system states are grouped together in this 
redundancy model. Failures are taken into account 
only when at least M equipments are operational 
among the N+S equipments (outside long duration 
unavailability). 

 
MAT : 1 2 3 4 5 6 7 8 

Ok: 1 - λ ON λ OFF  λ OFF    

Reconfiguration: 2  - 1/Treconf λ ON  λ OFF   

Loss of redundancy: 3   - λ ON 1/MDT  λ OFF  

Not available: 4    -   1/MDT λ OFF 

Ok and loss of spare: 5 1/TAT    - λ ON λ OFF  

Reconfiguration and loss of spare: 6  1/TAT     1/Treconf λ ON 

Loss off redundancy  and loss of spare: 7   1/TAT    - λ ON 

Not available and loss of spare: 8    1/(TAT+MDT)    - 
 

Figure 2. Markovian matrix 
 

As an example, the availability of architecture 
shown on figure 3 was calculated by the SUPER-
CAB tool that uses this hybrid technique.  
This example is evaluated thanks to the redundancy 
formula of figure 1 and also to a form of logical 

solver of the same type of those used in fault trees, 
but limited to the logical operators: OR (+), AND 
(*), NO (~). In the example, the equation is: 
(A+C*D)*B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 M N S MTBFON (hr) MTBFOFF Treconf MDT TAT Availability 
A 1 1 2 10000 100000 - 15 70 0.99850177 
B 1 2 1 2000 20000 10 20 500 0.97875901 
C 1 3 2 3000 30000 - 30 650 0.9884445 
D 2 3 1 2000 20000 10 20 500 0.91104693 
     Complete System (A+C*D)*B  0.978613126 

 
Figure 3. Example of hybrid model 
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The evaluation tool is coupled to an optimization 
tool (GENCAB) (Cabarbaye 2003) that is based on 
an hybrid method using genetic algorithms, differen-
tial evolution (Feoktistov 2004) and non-linear sim-
plex (Nelder Mead algorithm). Spare equipments 

stock can then be automatically optimized on cost 
and availability criteria (for example, availability 
≥0.99 in the example of figure 4). The convergence 
is very fast. (a few minutes with a Pentium 4) 

 
 M N S MTBFON (hr) MTBFOFF Treconf MDT TAT Availability Unit cost Spare cost 

A 1 1 0 10000 100000 - 15 70 0.99304866 1000 0 

B 1 2 3 2000 20000 10 20 500 0.99327934 9000 27000 

C 1 3 1 3000 30000 - 30 650 0.98039992 5000 5000 

D 2 3 1 2000 20000 10 20 500 0.91104693 2000 2000 

   ↑↑↑↑ Complete System (A+C*B)*B'  0.99254186  34000 

         ≥ 0.99  ⇓ 

 
Figure 4. Optimization of spare stock 

 
In the same way, the optimization can be done si-
multaneously on many parameters: components reli-
ability (quality level), redundancy levels, spare stock 
size or repair and supply time. Each of those pa-

rameters has an influence on acquisition and operat-
ing costs. On the example shown on figure 5, 20 pa-
rameters are taken into account for the optimization 
(bold red figures).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Multi-parameters optimization 
 

In the example of the figure 3, if it is supposed that 
the equipment B and D are identical and there is a 
common shared stock of spares, this hybrid method 
is not working because there is dependence between 
subsystems. In that case, it is not possible anymore 
to evaluate the availability of the system but only to 
find the probability of a stock interruption, by con-
sidering a strategy of maintenance consisting in us-
ing, if necessary, the same units located in redun-
dancy chains in the whole system.  Such a model is 
proposed in the form of a Markovian parametric 
formula considering, by type of unit, the numbers of 
active elements, redundant elements at ON state and 

elements at OFF state (redundant or spare). Another 
solution consists in evaluating the availability of the 
system by Monte-Carlo simulation. 
 

 
3 RECURSIVE SIMULATION MODEL 

When a system can not be split into independent 
sub-systems, or when those sub-systems are too 
complex, the simulation is the appropriate method. 
A technique based on recursive simulation model 
and effective optimization coupling allows optimiz-
ing the system without taking too much processing 



time. This method is the subject of another ESREL 
2006 article entitled: “Optimization and Recursive 
Simulation modelling”. Included in an Excel-based 
simulation tool (SIMCAB), it is illustrated on the 
Figure 6.  
 

 
 
 
 
 
 
 

  
 

Figure 6. Recursive Model 
 

This evaluation method of discrete states systems 
consists in defining a generic transition between a 
state Ei (at ti) and a state Ej (at tj). This transition is 
built by means of logical operators and of calcula-
tion between both states defined in cells of the 
spreadsheet. The tool algorithm copies the Ej state 
into the Ei state during all the mission time, starting 
from the initial E0 state (at t0). The time slot be-
tween ti and tj is the duration of two events follow-
ing each other. This duration is defined as the small-
est computed value, at the current time, among the 
time increments Tk corresponding to system status 

random changes or to the overstep of thresholds by 
continuous parameters.  
The considered systems can be Markovian or not 
(without influence of the preceding states) and pos-
sibly of hybrid type, defined by dependences be-
tween continuous and stochastic parameters. (La-
beau 2003) ( Castagna 2003) 
The simulation can be done with a step by step mode 
in order to validate the hypothesis or for a complete 
mission that is re-processed numerous times depend-
ing on the targeted results precision.  
An original coupling technique between optimiza-
tion and simulation algorithms allows decreasing the 
processing time (Cabarbaye and all 2006) (Chen and 
all 2000). This technique is very efficient and di-
vides the processing time by 30 on several test ex-
amples.  
This technique performs a  rough estimation of the 
quality of each candidate solution (50 simulations of 
the mission for example) before evaluating it with a 
higher precision (between 50 to 2000 simulations for 
example). 
The figure 7 shows an example of a similar redun-
dancy model as the one processed previously thanks 
to a Markovian model.  
Three cells of the spreadsheet are respectively the 
number of active elements (M), passive elements 
(N-M) and stock size (S), at the T0, Ti and Tj time.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Redundancy model of M active elements among N elements with a S size spare stock 

 
 The Time To Failure (TTF) and Time To Repair 
(TTR) are defined by equations where the function 
L_Exp() performs a randomized drawing of the ex-
ponentional law (20 different laws are available in 
the tool). Reconfigurations and standard exchanges 
are authorized only if redunded or spare equipments 

are present. The system is available as long as there 
are enough active elements. The average availability 
is computed on all the mission’s duration.  
The architecture of Figure 3 previously processed 
with hybrid model can be evaluated and optimized 
with a recursive model method as shown on figure 8.  
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Figure 8. Optimization of preceding architecture 
 

However, the coupling of optimization and sto-
chastic simulation has a difficulty concerning the 
availability constraint. Indeed, spare equipments 
costs and system availability are antagonist. There-
fore is the optimum located on the border of the 
constraint limit. But, because of the variance of the 
results obtained by simulation, several evaluations 
of a same solution at close range of the limit can 
strongly vary and lead to discarding a previously 
optimum-graded result. The penalty associated to 

the amplitude of the distance with the constraint 
border limit becomes a parameter difficult to set. 
That is why the optimization was done on the 
revenue performance defined as follow:  

Revenue = 100000 * Availability – Costs. 
Nevertheless, this model can deal with more com-
plex systems, with dependences between sub-
systems such as shared spare stock of B and D 
equipments if they are identical. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Architecture optimization 

  



In the same way, the example of figure 9 illustrates a 
simple academic case relating to the optimization of 
the preventive and corrective maintenance of a sys-
tem.  This one is composed of two engines in redun-
dancy supplied with two electric sources or an ac-
cumulator battery, through an automatic relay.  
The optimization relates simultaneously to the bat-
tery sizing and maintenance parameters: 
• Power supply MTTR (Mean Time To Repair): 

between 100 to 500 hours 
• Engine MTTR: between 500 to 200 hours 
• Automatic switch MTTR: between 100 to 500 

hours 
• Battery autonomy between 25 to 100 hours 
• Periodicity of battery maintenance operation: be-

tween 500 to 2000 hours 
The availability of the system is maximized here in a 
limited cost (4 €/hour) by using a parametric func-
tion of cost. 
We can notice that this system is only partially 
Markovian.  Indeed, the battery autonomy duration 
is deterministic and the reliability of the engines is 
modelled by a Weibull probability law and their 
maintenance by a lognormal law. This is why dura-
tions of engine operation and those of repair are ran-
dom simulated only one time, then decremented 
with the occurrence of each event.  It is the same for 
the battery autonomy duration. 
The validation of the simulation model is facilitated 
by an animated representation of the system which is 
directly coupled with the model. In this example this 
one allows visualizing, step by step, the state of 
equipment as well as the position of the automatic 
switch which can fail when it is requested. 
 

 
4  CONCLUSION 
 
Whatever their complexity, the reparable systems 
can be the subject of optimization in order to pro-
pose the best compromises between the availability 
of service and the costs. This optimization can be 
performed by coupling of evaluation and optimiza-
tion tools. Thus, it is possible to optimize overall 
various parameters concerning architectures, operat-
ing conditions, maintenance policy and logistical 
support. 
The techniques of evaluation per Monte-Carlo simu-
lation are much more constraining, in term of com-
puting time, than those performed by calculation, 
such as the hybrid method proposed in this paper. 
But the latter are not possible when the systems are 
too complex.  
The coupling between simulation and optimization 
tools is however feasible. Indeed such a coupling 

was implemented in a simulation tool for discrete 
states systems with an improvement allowing to re-
duce the computing times significantly (divided by 
30 approximately). 
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