
1 INTRODUCTION  

Used in economic or environmental forecast, the re-
cursivity allows simplifying the behavioral models 
but seems not very used in the Safety and Reliability 
field. These models describe the behavior of a dis-
crete states system only between two current mo-
ments, corresponding to a time incrementing (time-
simulation) or to the occurrence of particular events 
(event-simulation), such as random state transition 
or thresholds crossing by continuous variables. The 
treatment of the simulation model just consists in re-
injecting to the input, the state of the system at out-
put, starting from an initial state, as many times as it 
is necessary to take into account all the system’s 
mission duration. 
In other hand, the coupling between optimization 
and stochastic simulation, which consists in seeking 
an optimal system parameters configuration starting 
from the evaluation results obtained by Monte-Carlo 
simulation, is very constraining in terms of process-
ing duration. At first approximation, the number of 
simulations to be performed is equal to the number 
of evaluations necessary to ensure convergence, 
multiplied by the number of simulations required by 
the evaluation precision. However this duration can 
significantly be decreased by the choice of a strategy 
consisting in varying the precision of each configu-
ration evaluation, according to the results of a coarse 
evaluation carried out beforehand. 
The object of this communication relates to the im-
plementation of the recursivity and such a coupling 
by generic simulation an optimization tools. 
In order to show the capacity of this recursive tech-
nique and to demonstrate the coupling effectiveness 
on a real case, a problem of the space domain will be 
presented.  This one relates to the deployment and 

the renewal of a constellation of Earth observation 
satellites. 

 
 

2 RECURSIVE SIMULATION MODEL 

Included in an Excel-based simulation tool (SIM-
CAB), this method of evaluation of discrete states 
systems is illustrated on the Figure 1 (Cabarbaye and 
all 2005).  

 
 
 
 
 
 
 

  
 

Figure 1. Recursive Model 
 

It consists in defining a generic transition be-
tween a state Ei (at ti) and a state Ej (at tj). This 
transition is built by means of logical operators and 
of calculation between both states defined in cells of 
the spreadsheet. As an example, the figure 2 shows a 
passive redundancy M among N with a S size spare 
stock. The tool algorithm copies the Ej state into the 
Ei state during all the mission time, starting from the 
initial E0 state (at t0). The time slot between ti and tj 
is the duration of two events following each other. 
This duration is defined as the smallest computed 
value, at the current time, among the time incre-
ments Tk corresponding to system status random 
changes or to the overstep of thresholds by continu-
ous parameters. Twenty probability law random 
functions (L_Exp, L_Wei...) are proposed by the 
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tool to define the Tk values, with possibility of 
probability law adjustment starting from experimen-

tal data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Passive redundancy M among N with a S size spare stock 
 
The considered systems can be Markovian or not 
(with influence of the date of preceding events) and 
possibly of hybrid type, defined by dependences be-
tween continuous and stochastic parameters (Labeau 
2003) (Castagna 2003) (Iung and all 2003). 
The simulation can be done with a step by step mode 
in order to validate the model or for a complete mis-
sion that is re-processed numerous times depending 
on the targeted results precision. By means of the 
spreadsheet functionalities, the ergonomics of the 
model can be easily improved by replacing the 
names of cell by names of parameters, by using con-
ditional formats (colors depending on the component 
state) or by coupling parameters with objects (con-
tinuous value compared to a threshold). It is thus 
easy to carry out an animated representation of the 
system, which can preserve its topology (that of a 
telecommunications or transportation network for 
example), to facilitate its validation. The example of 
figure 3 shows such a simulation model performed 
for a hybrid system test case of IMDR-ESRA (Du-
tuit 03) concerning a mechanism of regulation of a 
tank level. Other applications of this method, relat-
ing to Markovian and nonMarkovian systems, are 
subject of another ESREL 2006 article (FAURE and 
all 2006). 
The model built by this recursive method is only 
based on logic and calculation and does not include 
any symbolic object. Thus, one of its originalities is 
to propose an alternative to the use of other behav-
ioral methods, such as the Petri nets, which do not 
constitute the ideal solution for all the problems. Re-
fusing the polemic on the comparative advantages of 
one solution versus the others, we will let the reader 
make his choice to solve new problems.  According 
to the experiment of each one and of the specificity 

of the problem, the effort of modeling required and 
the validity of the model carried out are only the 
good criteria of choice.  
 

 
 
 
 
 
 
 
 
 

Figure 3. Animated representation 
 
 

3 OPTIMIZATION COUPLING 

An original coupling technique between optimiza-
tion and simulation algorithms allows decreasing the 
processing time (Cabarbaye and all 2006). Included 
in an Excel-based optimisation tool (GENCAB), this 
technique is very efficient and divides the processing 
time by 30 approximately on several test examples. 
Based on a hybrid method associating Genetic Algo-
rithms (Goldberg 1994), Differential Evolution 
(Feoktistov 2004) and nonlinear Simplex (Nelder 
Mead algorithm), the principle of this generic tool is 
illustrated by figure 4 (Cabarbaye 2003). Composed 
of various parameters (genes) of type real, integer or 
binary, the chromosomes are subjecte to random 
mutation, crossings and differential evolutions 
(summation of a gene of chromosome with the dif-
ference between same genes of two other chromo-
somes). After selection, the best elements of the 
population can be improved at the local level by 
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several steps of Simplex.  This hybridization of total 
and local techniques, which can be possibly param-
eterized, allows making the tool robust to the diver-
sity of the problems defined by the user on a sheet of 

spreadsheet. Thus the Differential Evolution will be 
generally more effective to treat a convex function 
but will present the disadvantage, for others, simul-
taneously to exploit the whole of genes. 

 

 

 

 

 

 

 

 

 

Figure 4. Principle of the tool 
 

The principle of the coupling between optimization 
and simulation consists in performing a rough esti-
mation of each solution (50 simulations of the mis-
sion for example) before estimating them again with 
a higher precision according to first obtained results 
(between 50 to 2000 simulations for example). This 
coupling has to ensure the same probability of inap-
propriate rejection for each solution. That leads to a 
condition between respective values Ni and Nj, of 
the number of simulations to evaluate two candi-
dates i and j, according to the average and the stan-
dard deviation obtained by the rough-estimation lim-
ited to N0 simulations. 

Ni/Nj = [(M-m i0)*σj0/ (M-mj0)*σi0]
2 

This condition results directly from the central limit 
theorem. Found in the scientific literature (Chen and 
all 2000), the algorithm OCBA (Optimal Computing 
Budget Allowance) uses this same principle to seek 
an optimal value among a limited number of p can-
didates.  
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Figure 5. OCBA Algorithm 
 

At each iteration k, this one performs N news simu-
lations distributed according to ratio indicated of fig-
ure 5, with î the best current solution found during 

the iteration k-1; with Ji (average) and σi (standard 
deviation) resulting from the evaluation of i. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6. Principle of coupling 
 
As showed in figure 6, this same principle could be 
applied to the Genetic Algorithms, the Differential 
Evolution and the Simplex after certain adaptations:  
• The number of simulations performed during the 

rough estimation (N0) and that necessary to re-
quired precision (N) are defined a priori by the 
user. 

• The initial population of chromosomes (potential 
solutions) is evaluated with N0 simulations, then 
the best solution among this one (in average 
value) is revalued with N (by addition of N-N0 
simulations). 

• During various loops of computation, each can-
didate i resulting from a mutation, a differential 
evolution, a crossing or a local research (sim-
plex) is evaluated with N0 simulation then 
evaluated again with the value obtained from the 
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OCBA algorithm, limited to the N value (the re-
valuation is effective only if Ni > N0). 

• The summation used by algorithm OCBA, in the 
calculation of the ratios, is updated at each 
evaluation, in order not to have to consider later 
on the previous solutions (not all memorized), 
and is re-initialized when a better solution ap-
pears, which then becomes the current optimal 
solution. 

In addition, it appeared interesting not to require the 
maximum precision during all calculations but to in-
crease the precision at the same time of the im-
provement of the population performance. So an 
evolution profile of the number of simulations, from 
the first to the last loop, was implemented in the 
tool. 

 

4 APPLICATION CASE 

The application case relates to the deployment and 
the renewal of a constellation of Earth observation 
satellites. The system average performance (number 
of operational satellites simultaneously in orbit) and 
the associated costs are evaluated during the entire 
mission (30 years) according to the characteristics of 
the satellites (reliability, lifespan, time of manufac-
turing…), of the launchers used (capacity, reliability, 
time of booking...) and of the selected strategy of re-
newal (decision criterion of replacement, spare satel-
lite on ground or in orbit, anticipation of the end of 
lifetime...). Optimisation then consists in minimising 
the total cost of the constellation while respecting an 
objective of service availability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Constellation simulator 

 
The recursive model presented of figure 7 allows 
simulating the deployment and the renewal of such a 
constellation. The satellites can fail (OK≠1) in a 
random way, according to an exponential law in this 
application (λ constant), or in a deterministic way at 
the end of the lifespan which is limited by the pro-
pellant capacity (LD: Life Duration). The constella-
tion nominally consists of 7 simultaneously opera-
tional satellites. It is maintained by simple or 
multiple launches and the satellites can remain in 
orbit a certain time as a spare. Reconfiguration in the 
operational state (OP = 1) by ground command is 
then effective only after one month. A launching is 
decided as soon as the number of satellites function-
ing in orbit is lower than a required minimum num-
ber.  The end of satellites lifetime is anticipated to 
avoid service interruptions. Launching is performed 
only after reservation duration of the launcher and 
after the satellites manufacturing if spare are not 

available on ground. The launcher can also fail. The 
assumptions considered are detailed hereafter (al-
though the problem is real, the data presented are 
fictitious for reasons of confidentiality):  
• Incomes of the constellation per year:  166 M€ 

with 7 satellites operational 66 M€ with 6 satel-
lites and 0 M€ with less.  

• The cost of the recurring satellites depends on 
their lifespan, of their reliability at the end of the 
lifetime and of their period of manufacture, ac-
cording to the following formula:  
Satellite cost = 50 + 3 * (Lifespan - 5 years)2 + 
100 * (Reliability - 0,3) + 10 * (2 years - Period 
of manufacture)  

• A type of launcher among five is selected for the 
first launch and another for the following.  Each 
launcher has its particular characteristics: 



Type  1 2 3 4 5 
Probability of success  0,95 0,97 0,98 0,9 0,93 

Duration of reservation  0,6 0,5 0,3 1 0,8 
Capacity max  6 3 2 1 5 

Cost for :       
1 satellite  20 15 22 12 18 

2 satellites 36 20 40   34 
3 satellites 50 25     48 
4 satellites 60       59 
5 satellites 66       65 
6 satellites 70         

 

Optimization seeks to maximize the profits over 30 
years (incomes - cost) by modifying the following 
parameters: 
• Type (1 to 5) and capacity (1 to 6) of the first 
launcher used,  
• Type (1 to 5) and capacity (1 to 6) of the following 
launchers,  
• Lifespan of the satellites (5 to 10 years),  
• Reliability of the satellites at the end of the lifetime 
(0,3 to 0,8), 
• Time of manufacturing for one satellite (0,5 to 2 
years), 
• Minimum number of satellites in orbit triggering a 
new launch (7 to 11),  
• Manufacturing of ground spare after each launch:  
(true or false),  
• Duration of maintain constellation in operational 
condition:  (20 to 30 years). 
The application case is evaluated in 1 minute ap-
proximately for 100 simulations of the 30 years mis-
sion with Pentium 4 (figure 8). 
 

 

 

 

Figure 8. Results for a configuration of parameters 

The search for an optimal configuration requires 
more than 2000 evaluations to solve problems simi-
lar by Markovian calculation.  The total duration of 
the processing, without improvement of the cou-
pling, should thus be approximately one week for 
500 simulations per evaluation and one month for 
2000 simulations. 

5 RESULT OF OPTIMIZATION 

Optimization was launched simultaneously on two 
computers, with one only using the improved cou-
pling. The number of simulations per evaluation was 
between 50 and a value growing linearly from 50 to 
2000 for the first, and equal to 500 for the second. 
50 loops of calculation were performed by each of 
them. The standard tool adjustment was used (popu-
lation of 50 chromosomes, improvement of the best 
chromosome by 50 steps of simplex, etc). 

After less than 16 operating hours (one night), the 
first computer found the following solution evalu-
ated with 2000 simulations. Figure 9 shows the re-
sult of this optimal configuration. 

• Launcher type 2 with 3 satellites for the first 
launcher  
• Launcher type 2 with 1 satellite for the following  
• Satellite lifespan:  7,79 years  
• Satellite reliability:  0,78  
• Time of manufacturing:  0,51 years  
• Minimum number of satellites in orbit triggering a 
new launch:  7  
• Manufacturing of ground spare after each launch 
(but no spare in orbit)  
• Duration of maintain constellation in operational 
condition:  29,57 years 

After one week of calculation the second computer 
found a solution close although less powerful.  The 
evaluation of each solution had been limited to 500 
simulations instead of 2000 because of time con-
straints. 

 



 

Figure 9. Result of the optimal configuration 

The average number of simulations performed for 
each evaluation was 64 instead of 2000 (calculated 
by the tool throughout computation).  The comput-
ing time was thus divided by 31.25 on this example 
compared to the same computation performed with-
out improvement of the coupling. 

Note:  These tests highlighted a difficulty concern-
ing the taking into account of constraints when op-
timization is performed starting from simulation re-
sults. Indeed, the industrial problems are often posed 
in terms of minimization of a cost with satisfaction 
of a constraint of performance (availability...) or 
maximization of a performance in a limited cost. But 
the cost and the performance are often opposed, and 
the optimum is generally located at edge of the con-
straint. However because of the variance of the re-
sults obtained by simulation, several evaluations of 
the same solution can strongly vary by considering 
that it respects or not the constraint. Also, the pen-
alty associated with going beyond the constraint be-
comes difficult to adjust. 

6 CONCLUSION 

The original technique of recursive simulation mod-
elling appears well adapted to the resolution of cer-
tain problems of systems with discrete states, possi-
bly hybrid. It is an alternative to the use of other 
methods much more known which can sometimes 
lead to complex models difficult to validate. Based 
on the functionalities of a spreadsheet widely dif-
fused, it allows developing and validating complex 
models within a time and at an extremely competi-
tive cost.  Such simulators can be developed in all 
fields of engineering (air transports, rail networks, 
telecommunications, energy...), in order to test the 
operational capacity of the systems and to optimize 
their characteristics and conditions of operating and 
maintenance, as of the preliminary phases of design. 
The results obtained on various cases of application 
show that the advantage of the original coupling be-
tween optimization and Monte-Carlo simulation, 
proposed in this paper, is very significant in comput-
ing times (time divided by 30 approximately).  This 
result allows using this type of processing, which of-
fers many prospects, without waiting for much more 
powerful computers on the market. 
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