
1 INTRODUCTION 

Different theoretical models are proposed to assess 
the system reliability, taking into account the main-
tenance, the specific conditions of use and the envi-
ronment. Tools are available to adjust these models 
from feedback operational data but they may give 
wrong results, especially when the number of pa-
rameters in the model is greater than 2. The reason is 
simple. These tools implement local optimization 
methods (pseudo gradient, non linear simplex…) to 
make adjustments by the maximum likelihood 
method, while the model functions have multiple op-
tima. Using a Global Optimizer can overcome these 
difficulties. Thus the GENCAB tool (Cabarbaye, 
2003), based on a hybrid technique combining ge-
netic algorithms and non-linear simplex, makes cor-
rect adjustments. So, this paper presents reliability 
models, maintenance models and accelerated aging 
models, with adjustment problem in the past. It also 

shows the coupling possibilities of such optimization 
tool with assessment system model to optimise dif-
ferent parameters (period of preventive actions, de-
preciation duration, etc.). 

2 THE GENCAB TOOL 

Based on a hybrid method associating Genetic Algo-
rithms, Differential Evolution and nonlinear Simplex 
(Nelder Mead algorithm), this generic tool under 
Excel is illustrated by figures 1 and 2. Composed 
of various parameters (genes) of type real, integer or 
binary, the chromosomes are subjected to random 
mutation, crossings and differential evolutions 
(summation of a gene of chromosome with the dif-
ference between same genes of two other chromo-
somes). After selection, the best elements of the 
population can be improved at the local level by sev-
eral steps of Simplex. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Principle of the tool 
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ABSTRACT: This paper shows why a global optimization tool is essential for the adjustment of complex 
probabilistic model from feedback operational data. It is illustrated with several examples of reliability models 
(Bertholon, 3 phases) maintenance models (Generalized Renewal Process, Jack) and accelerated aging models 
(Arrhenius with Weibull, Basquin), with adjustment problem in the past and are performed here by a tool 
based on a hybrid technique combining genetic algorithms and non-linear simplex. It also shows the coupling 
possibilities of such optimization tool with assessment system model to optimize different parameters (period 
of preventive actions, depreciation duration, etc.). 
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Figure 2. Algorithms 
 
This hybridization of total (Genetic Algorithms) and 
local (Simplex) techniques, which can be possibly 
parameterized by the user, allows making the tool 
very efficient to find the global optimum and robust 
to the diversity of the problems addressed.  

Thus the Differential Evolution will be generally 
more effective to treat a convex function but will 
present the disadvantage, for others, simultaneously 
to exploit the whole of genes. This feature makes it a 
valuable tool for the adjustment of complex prob-
abilistic models and for the overall system trade-off 
among multiple parameters. 

3 RELIABILITY MODELS ADJUSTMENT 

3.1 Bertholon model 

Bertholon (Ziani, 2008) model combines an expo-
nential and a Weibull for the overall second and 
third parts of the bathtub curve (occasional failures 
and wear). This model seems likely to be used in the 
future to characterize the reliability of electronic 
components whose integration should lead to more 
and more severe life limitations. The model consists 
of two blocks in series, one corresponding to an ex-
ponential law and the second to a Weibull law. Its 
reliability is expressed by equation 1. 

R(t) = exp(-λt)*exp(-[max(0,t-T)/η]β)    (1) 

The occurrence of a fault can be simulated by the 
formula 2, under Excel, considering the lowest value 
simulated from these two models (obtained by re-
versing the distribution function from random value 
given by the ALEA function): 

MIN(-LN[ALEA()]/ λ ; T + η*(-LN[ALEA()]) 1/β) (2)     

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Simulation and fitting a Bertholon model (from 100 values) 

 
The density of the Bertholon law can be expressed 
by equation 3: 

f(t) = λ(t) * R(t)         (3) 

λ(t) = λ + SI(t >T ; β*(t-T)β-1/ηβ ; 0) 

R(t) = exp(-λt)*exp(-[max(0,t-T)/η]β) 

Simulated 
values Lambda R(t) LN(f(t)) 
10503 0,000349677 0,838708505 -8,134392409
11717 0,000946266 0,378091446 -7,935605935
11290 0,000747039 0,542865757 -7,810286412
11810 0,000988673 0,345548304 -7,981769399
11865 0,001013198 0,327328131 -8,011435451
10720 0,000464344 0,767975416 -7,938882017
11123 0,000666228 0,611241014 -7,806142027
2900 7,30849E-06 0,979027915 -11,84766864

11570 0,000878485 0,43243491 -7,87563544
12111 0,00112384 0,251411265 -8,171669178
11472 0,000832679 0,4704039 -7,845025738
11442 0,000818708 0,482128741 -7,837326914
11397 0,00079772 0,49983564 -7,827228875
12203 0,001164337 0,226434094 -8,240905096
10309 0,000240401 0,888387469 -8,451547586

19 7,30849E-06 0,999862406 -11,82661112
10646 0,000425943 0,793551587 -7,992442716
10428 0,000308224 0,85975487 -8,235792266
11017 0,000614636 0,653906526 -7,819271397
11837 0,001000777 0,336498463 -7,996140429
13694 0,001796656 0,024739626 -10,02117701
11122 0,000665799 0,611600343 -7,806198765
12074 0,001107112 0,262183572 -8,144710414
10237 0,000198265 0,902388997 -8,628615461 Adjusted Initial
11322 0,000762097 0,530059191 -7,81420289 Lambda : 7,31E-06 1,00E-05
10925 0,000568669 0,6907239 -7,842227188 Bêta : 1,85315788 2
11543 0,000865733 0,442921183 -7,866297055 LN Likelihood: -850,829668 Eta : 1867,61618 2000
11027 0,000619573 0,64987704 -7,8174521 T : 9966,78908 10000
10288 0,000228477 0,89264876 -8,497637317
11510 0,00085045 0,455578514 -7,85593192 T R(T) initial N(t) intial Frequency N(t) simulated R(T) ajusted N(t) ajusted
10792 0,000501715 0,741493235 -7,89656845 0 1 0 0 0 1 0
10744 0,000476738 0,759357686 -7,923826057 500 0,99501248 0,49875208 1 1 0,99635242 0,36475777
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Figure 3 shows an adjustment of the Bertholon 
model made from a sample of 100 simulated values. 
The curves show the distribution functions of the 
theoretical model, the experimental model (simu-
lated data) and the fitted model. We get approxi-
mately the values of model parameters used for 
simulation. 

We remind that the method of maximum likelihood 
is to find the parameters of the theoretical law by 
maximizing the product of probability densities 
given by this law for the experimental data (or the 
sum of their logarithms). Performed by the optimiza-
tion tool, the adjustment can be made from censored 
data by multiplying the product of densities by the 
product of the reliability values for censored data.  

3.2 Model with 3 phases  

Bertholon model can be generalized into a model to 
7 parameters characterizing the three phases of the 
bathtub curve: a first Weibull law with β < 1 for the 
phase of youth failure, an exponential law for the 
phase of occasional failures and a second Weibull 

with β > 1 for the wear phase. It corresponds to three 
blocks in series, the first is a Weibull, initiated at 
t = 0 (γ = 0) and limited to duration T1, and the other 
two corresponding to the Bertholon model. The oc-
currence of failure can be simulated by the formula 4 
under Excel. 

(4)  Ti = η1*(-LN[ALEA()]) 1/β1    T = si(Ti<T1 ; Ti ; 
MIN( -LN[ALEA()]/ λ ; γ2 + η2*(-LN[ALEA()]) 1/β2 )  

The adjustment is the same way as above with the 
expression of the density given by the formula 5. 

f(t) = λ(t) * R(t)           (5) 

λ(t) = si( t<T1 ; β1 * t
β1-1 / η1

β1 ; 0) + λ + si (t>γ2 ; 
β2 * (t-γ2)

β2-1 / η2
β2 ; 0) 

R(t) = exp(-[min(t ;T1)/η1]
β1) * exp(-λt) * exp(-

[max(0 ; t-γ2)/η2]
β2) 

Again, we find approximately the values of model 
parameters used for simulation as shown in figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Simulation and fitting a 4 phases model (from 100 values) 
 

4 MAINTENANCE MODELS ADJUSTMENT 

4.1 Generalized Renewal Process  

After corrective maintenance action the equipment 
can be 

- as good as new  
- as bad as old (in the state for his age)  
- better than old but worse than new (in an in-

termediate state, excluding statements better 
than new or worse than his age). 

Also 3 models have been proposed to model respec-
tively the 3 types of maintenance:  
  - The Renewal Process (RP)  
  - The Non-Homogeneous Poisson Process (NHPP)  
  - The Generalized Renewal Process (GRP) Type 1 
or 2.  
In the GRP model type 1, the corrective maintenance 
has a rejuvenating effect proportional to the time 
elapsed since the previous maintenance.  The virtual 
age (Ar) of the equipment immediately after the r th 
maintenance action (at time tr) is given by the for-
mula 6. 

Simulated 
valus λλλλ(t) R(t) LN(f(t)) 
17879 0,001704401 0,059570533 -9,19513576
16602 0,000999617 0,337505248 -7,994312984
2087 6,9998E-06 0,804133105 -12,08762015

17318 0,001403475 0,142611235 -8,516436708
16125 0,000711457 0,508096721 -7,925279458
16607 0,001002714 0,335720031 -7,996522533
17864 0,00169631 0,061148021 -9,173757844
16905 0,001174247 0,242631291 -8,163340916
667 0,000165624 0,854848687 -8,862622444
41 0,000377753 0,978059026 -7,903453975

16136 0,000718686 0,503913251 -7,92343735
15801 0,000501821 0,618770747 -8,077286558
16981 0,001216923 0,221661673 -8,218032907
17049 0,00125511 0,203767923 -8,271305901
16258 0,000793898 0,459619173 -7,915912875
16931 0,00118841 0,235561762 -8,180921388
115 0,000277752 0,95533554 -8,234476162
32 0,000407678 0,981607206 -7,82359751

16382 0,000869291 0,41449236 -7,928533677
16935 0,001190697 0,234430178 -8,183813884
16634 0,001018478 0,326680225 -8,008219202
15707 0,000438571 0,646443389 -8,16825883
17217 0,00134828 0,16377001 -8,418218072 Ajusted Initial
16422 0,000893024 0,400289051 -7,936465606 Bêta 1 : 6,95E-01 0,8
17027 0,001242582 0,209544912 -8,253380832 Eta 1 : 9999,9996 10000
18528 0,002039838 0,017651354 -10,23182777 LN Likelihood: -866,32265 T 1 : 1012,454212 1000
16136 0,000718632 0,50394438 -7,923450286 Lambda : 6,9998E-06 1,00E-05
5713 6,9998E-06 0,783983496 -12,11299699 Bêta 2 : 1,835146599 2

16701 0,00105736 0,304742795 -8,04026689 Eta 2 : 1638,152353 2000
17687 0,001602829 0,081818034 -8,939242833 Gamma 2 : 15184,7033 15000
16459 0,000915301 0,387002665 -7,945581457
16619 0,001009727 0,331689185 -8,001632593 T R(T) initial N(t) intial Frequency N(t) simulated R(T) ajusted N(t) ajusted
3671 6,9998E-06 0,795271263 -12,0987017 0 1 0 0 0 1 0

15560 0,000333888 0,684503194 -8,383766233 500 0,90843839 9,156161148 12 12 0,87984013 12,0159869
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Ar = Ar-1 + q*(tr - tr-1) = Ar-2 + q*(tr-1 - tr-2) + 
q*(tr - tr-1) = q*tr  (6) 

with q the rejuvenation factor . 
q = 0: complete rejuvenation (equivalent to a PR)  
q = 1: no rejuvenation (equivalent to a NHPP) 
 
The probability that the equipment is down at t, 
knowing it was repaired at tr is given by the for-
mula 7. 

[F(t)-F(tr)]/R(tr) = (1-R(t)-1+R(tr)) / R(tr) =1 - 
R(t)/ R(tr)       (7) 

If the aging of equipment is modeled by a Weibull 
law, the corresponding distribution function is given 
by the formula 8. 

F(t) =1-exp[(qtr/σ)β - ([qtr+(t-tr)]/σ)β]   (8) 

And the probability density is given by the for-
mula 9. 

f(t) =β(qtr+(t-tr))β-1/σβ exp[(qtr/σ)β - ([qtr+(t-
tr)]/σ)β]         (9) 

The GRP type 2 differs from type 1 by the fact that 
corrective maintenance led to a rejuvenation of the 

equipment proportional to its virtual age. The virtual 
age is given by the formula 10. 

Ar = q*(Ar-1 + tr - tr-1) = q*( q*(Ar-2 + tr-1 - tr-2) + tr 
- tr-1) = qr * t1 + qr-1 * (t2 – t1) + ....q *( tr – tr-1)  

Ar =  Σ1
r qr-i+1 *( t i – ti-1)   (10) 

The corresponding distribution function is given by 
the formula 11. 

F(t) =1-exp[(Ar/σ)β - ([Ar+t-tr]/σ)β]   (11) 

And the probability density is given by the for-
mula 12. 

f(t) =β(Ar+t-tr)β-1/σβ exp[(Ar/σ)β - ([Ar+t-tr]/σ)β]  

(12) 

Figure 5 shows an adjustment of the GRP model 
type 2 made from a sample of 200 simulated values. 
We get approximately the values of model parame-
ters used for simulation. The curves show the results 
of simulation results (number of failures as a func-
tion of time for 1 and 2000 simulations). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Simulation and fitting a GRP2 model (from 200 values) 
 

4.2 Jack Models 

Jack (Jack, 1998) proposes two models of aging in 
which the preventive and corrective maintenance 
have an effect of rejuvenation. This effect is greater 

in the case of a preventive maintenance (changing of 
several wear parts) than in the case of corrective 
maintenance (change of the one part down). 

 

Generalized Renewal Process (GRP) Type 2 
Bêta : 2

Sigma : 500
q : 0,5

T Age virtuel Nb pannes
0 0 0

178 89 1
765 338 2
986 280 3
1127 210 4
1406 245 5
1984 412 6
2257 342 7
2463 274 8
2522 166 9
2560 103 10
2975 259 11
3194 239 12
3330 187 13
3603 230 14
3699 163 15
3980 222 16
4154 198 17
4425 234 18
4757 283 19
5010 268 20
5345 302 21 Weibull
5712 334 22 Adjustment Bêta : 2,13
6246 434 23 Sigma : 523,64
6355 272 24 q : 0,53

6656 286 25 (logarithms)
6720 175 26 N° of  f ailure t(hr) Operating time Virtual Age Probability density
6877 166 27 1 561 561 280 -6,66400718
7102 196 28 2 662 102 191 -6,060101916
7147 121 29 3 778 115 153 -6,24090356
7613 293 30 4 912 134 144 -6,311498698
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Jack type 1 : 
- At the end of a corrective maintenance action, the 
virtual age of the equipment is equal to the one he 
had at the previous maintenance action (corrective or 
preventive) plus a proportion ρc of the time elapsed 
since.  
- At the end of a preventive maintenance action, the 
virtual age of the equipment is equal to the one he 
had in the previous action of preventive mainte-
nance, plus a proportion ρp of the time elapsed since. 

Jack type 2 : 
- At the end of a corrective maintenance action, the 
virtual age of the equipment is equal to the one he 
had just before this action multiplied by a proportion 
ρc.  

- At the end of a preventive maintenance action, the 
virtual age of the equipment is equal to the one he 
had just before this action multiplied by a proportion 
ρp. 
Similarly to the GRP model, the Jack type 2 model 
has been simulated by considering a periodic preven-
tive maintenance, then it was adjusted from a sample 
of simulated values. Figure 6 shows the different re-
sults. Once again, we get approximately the values 
of parameters used for simulation. 
It should be noted that the adjustment has always 
given a higher likelihood to that obtained with origi-
nal parameters configuration used to generate the 
data sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Simulation and fitting a Jack 2 model (from 200 values) 

 

5 ACCELERATED AGING MODELS 
ADJUSTMENT 

 
Accelerated aging models are useful to reduce the 
duration of reliability testing or assessing reliability 
under the conditions of use and the environment. But 
they can also be used to fit a model of reliability 
from operational data obtained under various condi-
tions of use and the environment, as showed in the 
following examples. 

5.1 Arrhenius with Weibull model 

The Arrhenius acceleration factor (13) can make the 
correspondence between periods of operation under 
different temperatures. 
                                                       (13) 

 
 

With: T: absolute temperature in degrees Kelvin  
(° K = ° C + 273,15)  
Ea: activation energy in eV (depending on the mate-
rial and its mechanisms of damage varies between 
0,2 and 1,1 eV)  

Jack Model type 2
Bêta : 2

Sigma : 600
ρc : 0,7

ρp : 0,3

Maintenance period: 300

Preventive 
Maintenance

Failure Virtual age T
Number of 

failures

0 0 0
300 210 431 1

431 102 1032 2
600 190 1272 3
900 343 1301 4

1032 142 1927 5
1200 218 2248 6

1272 87 2588 7
1301 35 2674 8

1500 163 3260 9
1800 324 3722 10

1927 135 3907 11
2100 216 4230 12

2248 109 4448 13 Adjusted Initial
2400 183 5540 14 Bêta : 2,21 2

2588 111 6394 15 Sigma : 623,14 600
2674 59 6768 16 ρc : 0,70 0,7

2700 59 6826 17 ρp : 0,26 0,3 ∑ LN V
3000 252 6959 18 -489,7435

3260 154 7318 19

N° of 
maintenance 

action

Preventive 
(hr)

Corrective 
(hr)

Virtual age
Operating 

time

Probability 
density 

(logarithms)

Reliability 
(logarithms)

LN 
likelihood

3300 135 7771 20 1 152 45 152 -7,391030081 -0,044427389 -7,39103
3600 305 8150 21 2 300 143 148 -7,13331614 -0,071782503 -0,071783

3722 128 8811 22 3 303 43 3 -7,397104081 -0,001766909 -7,397104
3900 214 9230 23 4 600 253 297 -6,633710368 -0,259924731 -0,259925

3907 66 10060 24 5 900 411 300 -6,417985991 -0,631766738 -0,631767
4200 251 10292 25 6 1198 210 298 -6,417998167 -0,933284022 -6,417998

4230 84 11045 26 7 1200 157 2 -6,95189905 -0,001630553 -0,001631
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K: Boltzmann constant (8,617385 10-5 eV / ° K) 
You may want to adjust a Weibull law from opera-
tional data obtained under various conditions of 

temperature, without knowing the value of the acti-
vation energy of the product. Then you have to fit a 
model with 4 parameters as shown in Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Fitting Weibull law with Arrhenius acceleration factor (activation energy unknown) 
 

5.2 Fatigue model 

Basquin's model (formula 14) is a model of fatigue 
acceleration making the correspondence between 
the numbers of cycles before failure for different 
values of constraint. 

FA = N/N0 =(τ0/τ)B    (14) 

Moreover, experience shows that a significant dis-
persion exists between parts of the same batch. 
They are approximately following lognormal law 
based on the number of cycles. 
From operational data obtained under various con-
straints, it is then possible to fit a lognormal law 
considering the coefficient B as additional parame-
ter of optimization as shown in Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 8. Fitting Lognormal law with Basquin’ acceleration factor  

Weibull law with Arrhenius acceleration factor (act ivation energy unknown)

Boltzmann constant: 8,62E-05
activation energy: 0,26

β :β :β :β : 3 , 9 09 0 43, 9 09 0 43, 9 09 0 43, 9 09 0 4
σ :σ :σ :σ : 48 9 ,1 8 648 9 ,1 8 648 9 ,1 8 648 9 ,1 8 6
γ :γ :γ :γ : 7 , 5 Ε−107, 5 Ε−107, 5 Ε−107, 5 Ε−10

T°C : 40 FA : 1,61

ti ln(f(ti)) ti ln(1-F(ti))
1000 -6,6277923
950 -6,659762

T°C : 50 FA : 2,16
899 -6,48447102 1000 -6,8647056

T°C : 60 FA : 2,84
410 -6,53821473
720 -6,36331959

T°C : 70 FA : 3,68
178 -7,78959471 470 -0,8552137
261 -6,74277736 550 -1,5809741
267 -6,68463165 600 -2,2214771
272 -6,6377125
279 -6,57432342
286 -6,5135633
334 -6,16453867 ∑ln(f(Ti)) : -132,18957
362 -6,01356056 ∑ ln(1-F(Tj)): -24,809925
419 -5,82583612 LN likelihood: -156,99949
426 -5,81416101
440 -5,79856344
470 -5,8010579
483 -5,81794151
531 -5,96882917
534 -5,98312366
543 -6,02960919
581 -6,28797582
589 -6,35576158

Failure data Censored data
Reliability curves : Weibull / Kaplan-Meier

0
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Accelerated fatigue model (Basquin's model)

mu : 10,34 ∑ ln(f(Ni)) : -18,95
sigma : 1,01 ∑ ln(1-F(Ni)): -2,36

B : 17,27 LN Likelihood: -21,31

τ/ττ/ττ/ττ/τe : 90% FA : 1101
Failure ln(f(Ni)) Censorship ln(1-F(Ni))

3 -3,38
11 -1,36
35 -0,95
52 -1,12

τ/ττ/ττ/ττ/τe : 80% FA : 144
155 -0,98
292 -0,98
621 -1,48
825 -1,81

τ/ττ/ττ/ττ/τe : 70% FA : 14
950 -1,26 1503 -0,45

1568 -0,98 1822 -0,57
1963 -0,94 1965 -0,62
2536 -0,94 2000 -0,63

τ/ττ/ττ/ττ/τe : 60% FA : 1
4450 -2,77 8000 -0,09

Reliability based on the number of cycles
Cyclic 60% of the yield strength
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6 OPTIMIZATION SYSTEM 

6.1 Coupling between optimization tool and 
assessment model  

 
The coupling between optimization tool and assess-
ment model allows optimizing globally many pa-
rameters of architecture and operating system (level 
of redundancy, quality of components, maintenance 
actions duration, size of spare stock, period of pre-
ventive actions, depreciation duration, etc.) as shown 
in figure 9 (Faure, 2008). 
The optimization can be based on a criterion and re-
specting various constraints such as availability 

greater than 0,98 at minimum cost or maximum 
availability and cost less than 5000 k€ for example. 
The coupling between optimization and assessment 
model by Monte-Carlo simulation is particularly re-
strictive in computing time. That is why the tool 
GENCAB has a particular algorithm (Cabarbaye, 
2006) limiting to only the necessary number of simu-
lations used to evaluate each solution (the overall 
computation time is roughly divided by 30 by this 
technique). The optimization of the maintenance 
(period of preventive actions, depreciation duration, 
etc.) can be made directly from a simulation model 
without having to use an analytical formula often 
complex or impossible to define. For example, opti-
mization of preventive maintenance actions is the 
subject of the next section. 

 
 
 
 
 
 
 
 

 
Figure 9. System optimisation 

 

6.2 Optimization of preventive maintenance 

In the case of equipment subject to wear, periodic 
maintenance may not be always optimal because 
preventive actions are too often at the beginning and 
not enough at the end of the process. Other strategies 
can be envisaged, such as those proposed below:  
- Maintenance can be done to ensure the same level 
of risk of failure between two preventive mainte-
nance actions.. 
- Preventive maintenance can be performed so as to 
make the average hourly cost of maintenance equal 
to a constant value during all the process. 
Illustrated by figure 10, the first of these strategies 
has been the subject of optimization shown in Figure 
11. 
 
 
 
 
 
 
 
 
 

 
Figure 10. Preventive maintenance policy 

 
Considering the average cost of preventive action 
(Cost preventive), the average cost of corrective action 
(Cost corrective), and the cost of equipment replace-
ment (Cost replacement), the maintenance optimization 

is to find the value α of risk of failure and the dura-
tion of equipment depreciation (T depreciation) such that 
the average hourly cost, defined by formula 15, is 
minimized. 

(Np * Cost préventive + Nc * Cost corrective + Cost re-

placement) / T depreciauion      (15) 

Np and Nc are the respective average numbers of 
preventive and corrective maintenance actions per-
formed during the period of depreciation of the 
equipment. 

7 CONCLUSION 
 
A global optimization tool is essential for the proper 
adjustment of probabilistic model a little complex 
from feedback operational data.  
This kind of adjustment opens the door to many op-
portunities for optimization of architecture, mainte-
nance or depreciation of the products.  
Beyond the field of reliability, a global optimization 
tool is valuable to perform the overall trade-off of 
system engineering between multiple parameters.  
The models presented in this paper were only chosen 
to illustrate the adjustment possibilities without ana-
lyse of their respective merits. Many others would 
have their place such as GEV (Generalized Extreme 
Value) or GPD (Generalized Pareto Distribution) 
laws used in the theory of extreme values, for exam-
ple.  
 

F(t) 

t α 

System model  
(calculation or simulation) 

 

Dependability assessment 
& 

Cost of Service 

Parameters 

Optimisation 
Criterion & Constraints 

Cost data 

Reliability data 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Optimization of preventive maintenance 
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Maintenance optimisation (Jack 2 model)
Bêta : 2

Sigma : 600 T depreciation: 28202 hours
ρc : 0,7
ρp : 0,3 Risk level : 0,32

Preventive action cost: 300
Corrective action cost: 1000

Replacement cost: 5000

Σ Cost /hr
2,97849153

T
Next 

scheduled 
action

Next failure Virtual age Cost

0 376 488 0 5000
376 656 628 113 300
628 827 1542 255 1000
827 1091 1086 136 300

1086 1277 1178 277 1000
1178 1376 1357 258 1000
1357 1536 1572 306 1000
1536 1794 2049 145 300
1794 2068 1875 121 300
1875 2135 2099 142 1000
2099 2298 2413 256 1000
2298 2562 3230 136 300

Probability graph
Average : 2,57  -  Standard deviation : 0,21
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