

Méthodologie de caractérisation de fiabilité des composants soumis à usure

André Cabarbaye

CAB INNOVATION

3 rue de la coquille, 31500 Toulouse – Tel : 05 61 54 68 08 Courriel : contact@cabinnovation.com Site : cabinnovation.com

Introduction

- Certains composants électroniques sont soumis à des phénomènes d'usure (wear out) et leur fiabilité ne peut pas être caractérisée par un taux de défaillance constant (loi exponentielle) comme dans le cas des pannes aléatoires.
- □ Le suivi d'un phénomène de dégradation permet d'acquérir beaucoup plus d'informations que le recueil des seules durées de fonctionnement utilisées pour ajuster une loi de fiabilité de type Weibull ou lognormale.
- □ Un modèle de trajectoire d'usure peut alors être établi et ajusté à partir du niveau de dégradation observé en essai ou en opération.

Introduction

□ Mais comment modéliser un processus de dégradation ?

- Les modèles explicatifs sont rares car ils nécessitent de connaître précisément la physique des phénomènes.
- Les modèles à espace d'états (ou multi-états) sont peu utilisés opérationnellement (modèles markoviens considérant des états de dégradation plus ou moins prononcée).
- Les modèles continus portent sur une grandeur physique observable (largeur de fissure, courant de fuite, échauffement...) dont on cherche à modéliser la trajectoire d'évolution.

□ Les dégradations peuvent être modélisées par des processus de Lévy selon l'évolution des phénomènes :

- croissante monotone
 Processus gamma
- continue avec un bruit aléatoire
 Processus de Wiener
 (mouvement brownien avec dérive)
- avec sauts à différents instants
 Processus de Poisson composé
- discontinue et non monotone
 Processus Variance Gamma

Processus de Lévy

Ces processus stationnaires sont caractérisés par des incréments indépendants qui ne dépendent que de la longueur de l'intervalle de temps (vitesse moyenne de dégradation constante)

Processus de Lévy

Processus de Lévy

- Gamma : $X(t+h) X(t) \sim \text{Loi Gamma } (\alpha h, \beta)$
- Wiener : $X(t+h) X(t) \sim \text{Loi Normale } (vh, \sigma \sqrt{h})$
- Poisson composé : $X(t+h) X(t) \sim Loi de Poisson (\lambda h) * Xu$
- Variance Gamma : $X(t+h) X(t) \sim \text{loi Variance Gamma } (h, \mu, \nu, \theta, \sigma)$

Processus Variance Gamma

- Processus à 4 ou 5 paramètres introduit en finance pour représenter le prix des options (Madan, 1998).
- Correspond à un processus de Wiener soumis à des changements de temps aléatoires selon un processus gamma ou à la différence de deux processus gamma.
- Sa fonction de densité de probabilité peut s'exprimer au moyen d'une fonction de Bessel du second type Kα(x) :

$$f_{X_t}(X) = \frac{2\mathrm{e}^{\frac{\mathrm{x}(-\mu)}{\sigma^2}}}{v^{\frac{\mathrm{t}}{\mathrm{V}}} 2\sqrt{\pi}\left(\frac{\mathrm{t}}{\mathrm{v}}\right)} \left(\frac{\mathrm{x}(-\mu)^2}{\frac{2\sigma^2}{\mathrm{v}} + \theta^2}\right)^{\mathrm{t}^{\frac{2}{\mathrm{v}} - \frac{1}{4}}} \mathrm{K}_{\frac{\mathrm{t}}{\mathrm{v}} - \frac{1}{2}} \left(\frac{1}{\sigma^2} \sqrt{\mathrm{x}(-\mu)^2 \left(\frac{2\sigma^2}{\mathrm{v}} + \theta^2\right)}\right)$$

Processus de Lévy

 Les processus de Lévy peuvent devenir non stationnaires par un changement de la variable temps et peuvent être accélérés par un facteur d'accélération (AF) :

 $\mathbf{h'} = \mathbf{p}(\mathbf{AF^*}(\mathbf{t}+\mathbf{h}))^q - \mathbf{p}(\mathbf{AF^*t})^q \qquad \text{ou}$

h' = $p(AF_e(t+h)^*(t+h))^q - p(AF_e(t)^*t)^q$ avec des stress variables

Le choix d'un seuil de fonctionnement permet de passer d'un modèle de dégradation à un modèle de fiabilité.

Processus de Lévy

Fiabilité ou loi du premier franchissement d'un seuil α

- La courbe de fiabilité peut être obtenue de manière analytique ou par simulation de Monte-Carlo.
- Processus Gamma :

1 -
$$R(t) = P(X(t - t_0) \le \alpha - X_0)$$
 avec $X(t)$ la loi Gamma

• Processus de Wiener : loi inverse-gaussienne de densité de probabilité :

$$f(x,\lambda,\mu) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} e^{\frac{-\lambda(x-\mu)^2}{2\mu^2 x}} \qquad \text{avec } \lambda = \alpha/\nu \text{ et } \mu = \alpha^2/\sigma^2$$

Sous réserve en attente d'évaluation

□ A partir de la courbe de fiabilité, une loi de type Weibull ou lognormale peut être ajustée par la méthode des moindres carrés.

Application

Dégradation non monotone des composants VCSELS en test accéléré

- Ajustement d'un processus de Wiener non stationnaire accéléré (outil Gencab)
 - ✓ Large intervalle de confiance pour les paramètres p et θ (ou v) fortement corrélés

Application

\Box Trajectoire d'usure et courbe de fiabilité au niveau de seuil α

T : 85°C I :10mA α : -37 % de la puissance optique

- Traitement par simulation de Monte-Carlo (outil Simcab)
- Ajustement d'une loi lognormale par la méthode des moindres carrés

Conclusion

- □ Les processus de Lévy sont bien adaptés à la modélisation des phénomènes de dégradation, tels que l'usure ou la propagation de fissures.
- Ils peuvent devenir non stationnaires pour pouvoir considérer des vitesses de dégradation variables et être accélérés pour tenir compte des conditions d'utilisation et d'environnement.
- Parmi ces processus, le processus Variance Gamma présente une grande souplesse pour représenter la diversité des phénomènes de dégradation, mais comprend davantage de paramètres (4 ou 5).
- Associant des algorithmes génétiques au simplexe (Nelder-Mead), l'outil Gencab (sous Excel) intègre désormais une fonction de calcul de la densité de probabilité de la loi Variance Gamma.
- Cette dernière a fait l'objet d'une récente communication :

A., A. & A. CABARBAYE, Degradation modelling for predictive maintenance under various operating and environmental conditions / ESREL, 19-23 September 2021, Angers.

Pour en savoir plus

ISBN : 979-10-97287-12-2

ISBN : 979-10-97287-13-9

A paraître

Cab Innovation éditeur