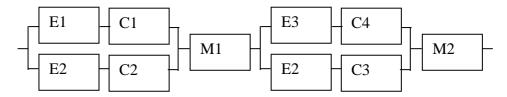

TP N° 48

Evaluation d'une architecture

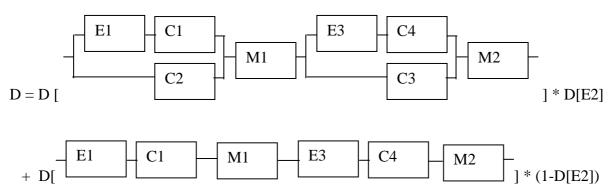
L'objet de ce TP est de montrer sur un cas simple qu'une même architecture peut être traitée au moyen de divers outils de modélisation selon le détail de ses caractéristiques. Il porte sur l'évaluation de la disponibilité d'un système de motorisation et de sa commande.

Le système réparable, ci-dessous, est constitué de 2 moteurs commandés chacun part une électronique à partir d'une information de position délivrée par un capteur. Une électronique en redondance froide peut commander l'un des 2 moteurs au moyen d'un capteur additionnel.

	Electronique	Capteur	Moteur
MUT:	20 000 h	100 000 h	2 000 000 h
MDT:	10 h	10 h	100 h
Stock de rechange :	1	2	1
TAT:	500 h	500 h	2000 h


 $MUT_{OFF} = 10 * MUT_{ON}$

A partir des caractéristiques ci-dessus, évaluer la disponibilité de cette architecture au moyen d'un bloc diagramme de fiabilité, d'un arbre de défaillance, d'un modèle markovien et d'un modèle de simulation récursive, en considérant d'éventuelles hypothèses simplificatrices.


1) Bloc diagramme de fiabilité (BDF)

Associé à un traitement analytique, le BDF est un modèle statique qui suppose une indépendance entre éléments. Il ne permet pas de prendre en compte la redondance froide.

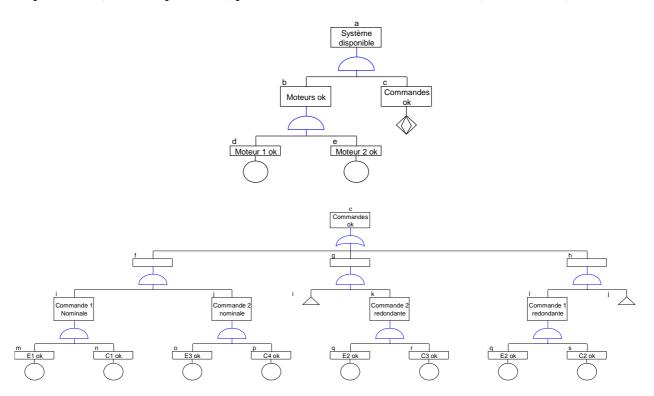
En considérant un stock de rechange infini (disponibilité intrinsèque) et une redondance chaude (hypothèse conservative) la disponibilité de l'architecture peut s'évaluer à partir du BDF suivant :

La prise en compte de l'élément E2 peut se traiter simplement par application du théorème des probabilités totales :

Soit:

$$\begin{split} D &= (1-(1-D[E1]*D[C1])*(1-D[C2]))*D[M1]*(1-(1-D[E3]*D[C4])*(1-D[C3]))*D[M2]*D[E2] \\ &+ D[E1]*D[C1]*D[M1]*D[E3]*D[C4]*D[M2]*(1-D[E2]) \\ avec \ D[Ei] &= Di = MUT_{Ei} \ / \ (MUT_{Ei} + MDT_{Ei}) \end{split}$$

$$D = (1-(1-De*Dc)*(1-Dc))*Dm*(1-(1-De*Dc)*(1-Dc))*Dm*De+De*Dc*Dm*De*Dc*Dm*(1-De)$$


_	Electronique	Capteur	Moteur
MUT (hr):	20 000	100 000	2 000 000
MDT (hr):	10	10	100
$\mathbf{D_{i}}$:	0,999500	0,999900	0,999950
_			
Disponibilité :	0,999899		

Fichier Excel disponible par double clic sur l'icône :

2) Arbre de fautes

Dans sa forme classique, l'arbre de fautes est également un modèle statique qui suppose une indépendance entre éléments. En considérant les mêmes hypothèses que précédemment la disponibilité (ou l'indisponibilité) peut s'évaluer de la manière suivante (outil Cabtree).

Les résultats sont identiques à ceux obtenus au moyen du BDF :

Туре	Intitulé	Variable	Porte	Probabilité à t = 1000 ans	Etat initial	Loi	Après t >=
Rectangle	Système disponible	a	ET(b,c)	0,999899			
Rectangle	Moteurs ok	b	ET(d,e)	0,999900			
Rectangle	Commandes ok	С	OU(f,g,h)	0,999999			
Cercle	Moteur 1 ok	d	=	0,999950	0	Dis(0,0000005;0,01)	0
Cercle	Moteur 2 ok	е	-	0,999950	0	Dis(0,0000005;0,01)	0
Rectangle		f	ET(i,j)	0,998801			
Rectangle		g	ET(i,k)	0,998801			
Rectangle		h	ET(I,j)	0,998801			
Rectangle	Commande 1 Nominale	i	ET(m,n)	0,999400			
Rectangle	Commande 2 nominale	j	ET(o,p)	0,999400			
Rectangle	Commande 2 redondante	k	ET(q,r)	0,999400			
Rectangle	Commande 1 redondante	ı	ET(q,s)	0,999400			
Cercle	E1 ok	m	-	0,999500	0	Dis(0,00005;0,1)	0
Cercle	C1 ok	n	-	0,999900	0	Dis(0,00001;0,1)	0
Cercle	E3 ok	0	-	0,999500	0	Dis(0,00005;0,1)	0
Cercle	C4 ok	р	-	0,999900	0	Dis(0,00001;0,1)	0
Cercle	E2 ok	q	-	0,999500	0	Dis(0,00005;0,1)	0
Cercle	C3 ok	г	-	0,999900	0	Dis(0,00001;0,1)	0
Cercle	C2 ok	S		0.999900	0	Dis(0.00001:0.1)	0

Fichier Excel disponible par double clic sur l'icône :

Remarque : Pouvant effectuer ses traitements par simulation de Monte-Carlo, l'outil CABTREE permet de considérer certains aspects dynamiques (loi d'apparition et de disparition, porte délai, conditions de précédence, dépendances, etc.). En dehors des cas simples, il est cependant conseillé d'utiliser une technique de modélisation dynamique (Markov, réseaux de Petri, simulation récursive, etc.).

3) Traitement markovien

La redondance froide peut être considérée dans un modèle markovien mais le nombre d'états de ce dernier croît très rapidement avec le nombre d'éléments considérés (2ⁿ états pour n éléments à 2 états).

Aussi limite-t-on cette explosion combinatoire en ne considérant dans les modèles que les éléments interdépendants au sein de sous ensembles indépendants ; ces derniers pouvant être traités au niveau supérieur au moyen d'un arbre de défaillance.

Ainsi, les 2 moteurs seront considérés en série avec leur commande constituée de 7 éléments interdépendants (128 états).

L'outil Supercab permet de générer automatiquement un tel modèle à partir d'expressions logiques définissant la condition de fonctionnement et les diverses relations de dépendance (états off):

ELEMENTS	MTTF	Nb	Type de	MTTF	Taux d'	MTTR	Disponibilité		
	ON		redondance	OFF	utilisation	(heure)	à t infini		
	(heure)			(heure)	r (%)				
Moteur 1	2000000		série			100	0,999950002		
Moteur 1	2000000		série			100	0,999950002		
Electronique 1 (a)	20000					10			
Electronique 2 (b)	20000					10			
Electronique 3 (c)	20000					10			
Capteur 1 (d)	100000					10			
Capteur 2 (e)	100000					10			
Capteur 3 (f)	100000					10			
Capteur 4 (g)	100000					10			
				b off : a*c					
			a*d*c*g+a*d*b*						
			f+b*e*c*g	f off : c*g			0,99999929		
\$	\$ ENSEMBLE								

Cliquer sur l'icône pour ouvrir le fichier Excel:

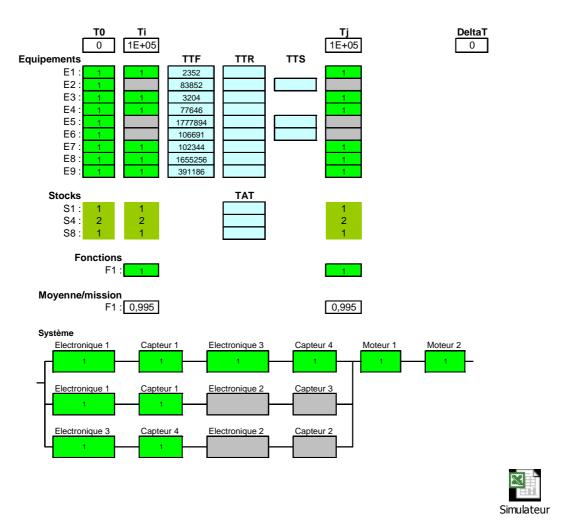
Le modèle est généré dans une page additionnelle à la table de calcul comme indiqué ci-après.

Remarque : le modèle est limité à 128 états sur EXCEL 2010 / Supercab V14.1 et à 64 états dans les versions antérieures. Cependant l'électronique 1 et le capteur 1 ainsi que l'électronique 3 et le capteur 4 peuvent être regroupés dans cet exemple puisque leur perte conduit à un effet similaire et leur durée de réparation est identique (passage de 128 à 32 états).

DISPOI		EXPRESSIONS EDGIQUES								
	Etats disponibles:	a* d* c* g+a* d* b* f+b* e* c* g	ETATS:	MAT:	1	2	3	4	5	6
			gfedcba	1	-	5E-05	5E-06		5E-05	
	Lbda : 0,00005		g f e d c bna	2	0,1	-		5E-05		5E-05
			g f e d cnb a	3	0,1		-	5E-05		
			g f e d cnbna	4		0,1	0,1	-		
			g f e dnc b a	5	0,1				-	5E-05
	Mua: 0,1		g f e dnc bna	6		0,1			0,1	-
			g f e dncnb a	7			0,1		0,1	
	Bectronique 1		g f e dncnbna	8				0,1		0,1
			g f end c b a	9	0,1					
	Lbdb : 0,00005		g f end c bna	10		0,1				
	0,000005	a*c	g fend cnb a	11			0,1			
			g f end cnbna	12				0,1		
			g f endnc b a	13					0,1	
	Mub: 0,1		g f endnc bna	14						0,1
			g f endnonb a	15						
	∃ectronique 2		g f endncnbna	16						
			g fne d c b a	17	0,1					

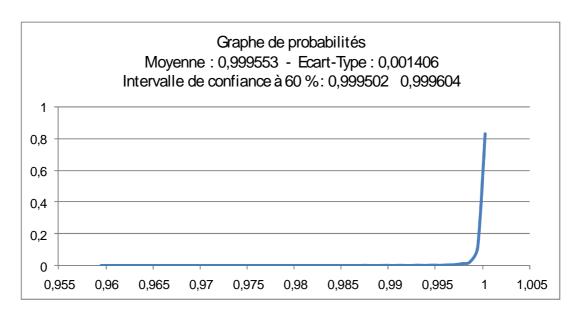
4) Modèle de simulation récursive

Traités par simulation de Monte-Carlo, les modèles de simulation récursive permettent de modéliser des systèmes à états hybrides (à variables aléatoires et/ou continues) sans limitation du nombre d'états. Des stocks de rechange d'équipements, éventuellement partagés, peuvent alors être considérés.


L'outil SIMCAB permet de générer un tel modèle à partir des caractéristiques de l'architecture comme indiqué ci-dessous :

Architecture

	Faurinament	D	anne	Dánas		Passif				Passif Sto			Stock re	echange)
	Equipement	P	anne	Répar	ation		Panne OFF		nne _{OFF} T _{Reconf}					TAT	
N°	Nom	Loi	λ	Loi	μ	Condition OFF	Loi	λ_{OFF}	Loi	T _{reconf}	γ	N°	S	Loi	TAT
1	Electronique 1	EXP	5,E-05	EXP	0,1		EXP		EXP			1	1	EXP	500
2	Electronique 2	EXP	5,E-05	EXP	0,1	1*3	EXP	5E-06	EXP			1		EXP	
3	Electronique 3	EXP	5,E-05	EXP	0,1		EXP		EXP			1		EXP	
4	Capteur 1	EXP	1,E-05	EXP	0,1		EXP		EXP			4	2	EXP	500
5	Capteur 2	EXP	1,E-05	EXP	0,1	1*4	EXP	1E-06	EXP			4		EXP	
6	Capteur 3	EXP	1,E-05	EXP	0,1	3*7	EXP	1E-06	EXP			4		EXP	
7	Capteur 4	EXP	1,E-05	EXP	0,1		EXP		EXP			4		EXP	
8	Moteur 1	EXP	5,E-07	EXP	0,01		EXP		EXP			8	1	EXP	2000
9	Moteur 2	EXP	5,E-07	EXP	0,01		EXP		EXP			8		EXP	


	Fonctionnement								
N°	Nom	Condition							
1	Système	(E1*E4*E3*E7+E1*E4*E2*E6+E3*E7*E2*E5)*E8*E9							
2									
3									
4									
5									

Le simulateur est généré automatiquement à partir de la table comme indiqué ci-après. Celui-ci peut être accompagné de son BDF et être activé en pas à pas, ou durant une ou de multiples histoires.

Fichier Excel disponible par double clic sur l'icône :

Calculée à partir de 5000 simulations, la disponibilité moyenne sur 10000 heures est la suivante :

Remarques : Pour les éléments en redondance, il n'a pas été considéré de temps de reconfiguration (tr) ni de panne à la sollicitation (γ) .

D'autres lois que la loi exponentielle peuvent être également considérées (Weibull, lognormale, etc.). Le système n'est alors plus markovien et l'historique des événements est alors conservé.